Formal proofs and certified computation in Coq for solving the Table Maker's Dilemma

Érik Martin-Dorel

Postdoc in the Toccata team, Inria Saclay – \hat{I} le-de-France, LRI

RAIM 2013, Institut Henri Poincaré 19th November 2013

Introduction

Acknowledgements

The TaMaDi project of the ANR

Project leader: Jean-Michel Muller

Project members: Jean-Claude Bajard, Nicolas Brisebarre, Florent de Dinechin, Pierre Fortin, Mourad Gouicem, Stef Graillat, Guillaume Hanrot, Thibault Hilaire, Mioara Joldeş, Christoph Lauter, Vincent Lefèvre, Érik Martin-Dorel, Micaela Mayero, Marc Mezzarobba, Jean-Michel Muller, Andy Novocin, Ioana Paşca, Laurence Rideau, Damien Stehlé, Laurent Théry, Serge Torres.

Formal proofs and certified computation in Coq for solving the TMD

Introduction

Acknowledgements

The TaMaDi project of the ANR

Project leader: Jean-Michel Muller

Project members: Jean-Claude Bajard, Nicolas Brisebarre, Florent de Dinechin, Pierre Fortin, Mourad Gouicem, Stef Graillat, Guillaume Hanrot, Thibault Hilaire, Mioara Joldeş, Christoph Lauter, Vincent Lefèvre, Érik Martin-Dorel, Micaela Mayero, Marc Mezzarobba, Jean-Michel Muller, Andy Novocin, Ioana Paşca, Laurence Rideau, Damien Stehlé, Laurent Théry, Serge Torres.

Erik Martin-Dorel

Formal proofs and certified computation in Coq for solving the TMD

The IEEE 754–2008 standard for floating-point (FP) arithmetic requires correct rounding for +, -, ×, ÷, $\sqrt{\cdot}$

The IEEE 754–2008 standard for floating-point (FP) arithmetic requires correct rounding for +, -, ×, ÷, $\sqrt{\cdot}$

A correctly-rounded operation whose entries are FP numbers must return what we would get by infinitely-precise operation, followed by rounding.

The IEEE 754–2008 standard for floating-point (FP) arithmetic requires correct rounding for +, -, ×, ÷, $\sqrt{\cdot}$

A correctly-rounded operation whose entries are FP numbers must return what we would get by infinitely-precise operation, followed by rounding.

Advantages: greatly improves accuracy, portability, as well as provability: one can devise algorithms and proofs that use the specifications.

The IEEE 754–2008 standard for floating-point (FP) arithmetic requires correct rounding for +, -, ×, ÷, $\sqrt{\cdot}$

A correctly-rounded operation whose entries are FP numbers must return what we would get by infinitely-precise operation, followed by rounding.

Advantages: greatly improves accuracy, portability, as well as provability: one can devise algorithms and proofs that use the specifications.

IEEE 754–2008 only recommends correct rounding for elementary functions (exp, sin, ...) \Rightarrow solve the Table Maker's Dilemma for each function.

Introduction

Introduction

The Table Maker's Dilemma (TMD) (continued)

Solving the TMD = find the hardest-to-round cases of f: the FP values x such that f(x) is closest to a breakpoint without being a breakpoint.

The Table Maker's Dilemma (TMD) (continued)

Solving the TMD = find the hardest-to-round cases of f: the FP values x such that f(x) is closest to a breakpoint without being a breakpoint.

The hardest-to-round case of \exp for decimal64 and rounding-to-nearest is

 $x = 9.407822313572878 \times 10^{-2}$

The Table Maker's Dilemma (TMD) (continued)

Solving the TMD = find the hardest-to-round cases of f: the FP values x such that f(x) is closest to a breakpoint without being a breakpoint.

The hardest-to-round case of \exp for decimal64 and rounding-to-nearest is

 $x = 9.407822313572878 \times 10^{-2}$

 $\exp(x) = 1.098645682066338 \ 5 \ 000000000000000 \ 278\dots$

Computation of lists of hard-to-round cases

Finding all the hard-to-round cases of f over ${\pmb I}$ with respect to $\epsilon>0$

$$\left\{ x \in \mathbb{F} \cap I \middle/ \left| \left(\frac{f(x)}{\mathrm{ulp}(f(x))} - \frac{1}{2} \right) \operatorname{cmod} 1 \right| \leq \epsilon \right\}.$$

Erik Martin-Dorel

Formal proofs and certified computation in Coq for solving the TMD

Computation of lists of hard-to-round cases

Finding all the hard-to-round cases of f over ${\pmb I}$ with respect to $\epsilon>0$

$$x \in \mathbb{F} \cap I / \left| \left(\frac{f(x)}{\mathrm{ulp}(f(x))} - \frac{1}{2} \right) \operatorname{cmod} 1 \right| \leq \epsilon \right\}.$$

Computation of lists of hard-to-round cases

Finding all the hard-to-round cases of f over ${\pmb I}$ with respect to $\epsilon>0$

Erik Martin-Dorel

Formal proofs and certified computation in Coq for solving the TMD

The Stehlé–Lefèvre–Zimmermann (SLZ) algorithm

- $\mathsf{SLZ}\ =\ \mathsf{Polynomial}\ \mathsf{Approximation}\ +\ \mathsf{Coppe}$
- $+ \quad Coppersmith's \ technique$
 - + Bivariate Hensel lifting

The Stehlé–Lefèvre–Zimmermann (SLZ) algorithm

- Sophisticated algorithms with highly optimized implementations
- Rely on many tools and libraries (SAGE, MPIR, FLINT, fpLLL, ...)
- Very long calculations (several years of CPU time)

Introduction

The SLZ algorithm (continued)

First step: Turn the TMD into a problem involving integers

Outline

- 2 The CoqApprox library
- 3 The CoqHensel library
- 4 Conclusion and perspectives

CoqApprox: Context and motivations

Goal

Compute polynomial approximations of univariate functions along with certified error bounds: for a given function f over an interval^{*a*} I, compute P, ϵ and formally prove that $\forall x \in I$, $|f(x) - P(x)| \leq \epsilon$

^aIntervals are printed in bold.

CoqApprox: Context and motivations

Goal

Compute polynomial approximations of univariate functions along with certified error bounds: for a given function f over an interval^{*a*} I, compute P, ϵ and formally prove that $\forall x \in I$, $|f(x) - P(x)| \leq \epsilon$

^aIntervals are printed in bold.

Example

For $f(x) = \sin x$ over I = [-1, 1] and a target accuracy of 2^{-400} , we can compute an order-80 Taylor expansion of f around 0 for the polynomial P and take $\epsilon = 1.79 \times 2^{-402}$.

CoqApprox: Mathematical setup

Data structure

A rigorous polynomial approximation (RPA) is a pair (P, Δ) where P is a polynomial in a given basis, and Δ an interval. Typical examples of RPAs are Taylor Models (TMs) and Chebyshev Models (CMs).

CoqApprox: Mathematical setup

Data structure

A rigorous polynomial approximation (RPA) is a pair (P, Δ) where P is a polynomial in a given basis, and Δ an interval. Typical examples of RPAs are Taylor Models (TMs) and Chebyshev Models (CMs).

Methodology

- For basic^a functions: rely on the Taylor–Lagrange formula.
- Por composite functions, we define some "arithmetic rules" for addition, multiplication, composition, and division.
 E.g.: if (P₁, Δ₁) is a TM of f₁ and (P₂, Δ₂) is a TM of f₂, then (P₁, Δ₁) ⊕ (P₂, Δ₂) := (P₁ + P₂, Δ₁ + Δ₂) is a TM for f₁ + f₂.

^aWe focus on *D*-finite (*aka* holonomic) functions, i.e., solutions of homogeneous linear ordinary differential equations with polynomial coefficients.

CoqApprox: Formalization and machine-checked proofs

- Libraries used: Ssreflect [MathComponents], CoqInterval [Melquiond]
- Efficiency: on the whole, the timings of the Coq implementation have the same order of magnitude as that of the C implementation provided in Sollya [Chevillard, Joldeş, Lauter]
- Sharp bounds: thanks to the implemented algorithm called Zumkeller's technique, the approximation of basic functions leads to sharp bounds in practice.

From SLZ to certificates for Integer Small Value Problems

Formal proofs and certified computation in Coq for solving the TMD

Introduction

From SLZ to certificates for Integer Small Value Problems

^L/16

Introduction

From SLZ to certificates for Integer Small Value Problems

Formal proofs and certified computation in Coq for solving the TMD

A verified checker for the Integer Small Value Problem

Theorem

For any certificate $(P, A, B, M, \alpha, u_1, u_2, p, k, L)$ that is accepted, we have

 $\forall (x,y) \in \llbracket -A, A \rrbracket \times \llbracket -B, B \rrbracket, \ P(x) \equiv y \ (\mathrm{mod} \ M) \implies (x,y) \in L.$

The Coq proof required the formalization of several mathematical notions:

- Taylor's theorem for bivariate polynomials,
- Hensel's lemma for pairs of bivariate polynomials,
- properties of the weighted norm-1 of a bivariate polynomial,

. . .

Challenges and methodology

Formalizing efficient computation in a proof assistant is often challenging.

• Approach by refinement: first, prove an abstract version of the algorithms, then refine them to effective implementations that are proved correct w.r.t. the abstract version.

Challenges and methodology

Formalizing efficient computation in a proof assistant is often challenging.

- Approach by refinement: first, prove an abstract version of the algorithms, then refine them to effective implementations that are proved correct w.r.t. the abstract version.
- Approach by certificates: rather than formally verifying the correctness of an optimized implementation of a complex algorithm such as LLL, generate some "logs" of its execution and check them independently.

Introduction	The CoqApprox library	The CoqHensel library	Conclusion and perspectives
Milestone			

We can compute formally verified Taylor Models for the following *D*-finite functions: $x \mapsto \frac{1}{x}, \sqrt{\cdot}, \frac{1}{\sqrt{\cdot}}, \exp, \sin, \cos,$ and the algorithms to compute Taylor Models for composite functions (involving the operations $+, \times, \circ, \div$) have also been formally verified.

1.1				
Int	roc	luc	±10	าท
1110	100	iuc	CIV	211

Milestone

We can compute formally verified Taylor Models for the following *D*-finite functions: $x \mapsto \frac{1}{x}, \sqrt{\cdot}, \frac{1}{\sqrt{\cdot}}, \exp, \sin, \cos,$ and the algorithms to compute Taylor Models for composite functions (involving the operations $+, \times, \circ, \div$) have also been formally verified.

Test-suite for CoqHensel:

• 4096 ISValP certificates to address an exponent of exp in binary64: n := 53, n' := 300, $\alpha := 13$, $\approx 100 \text{ MB}$ of data. The generation of each certificate takes $\approx 140 \text{ s}$, and the verification in Coq takes $\approx 35 \text{ s}$ (using native_compute with "bigZ \times bigN" integers).

1.1								
	- r		cl.			11		
		9	a	u,	-	48	0	

Milestone

We can compute formally verified Taylor Models for the following *D*-finite functions: $x \mapsto \frac{1}{x}, \sqrt{\cdot}, \frac{1}{\sqrt{\cdot}}, \exp, \sin, \cos,$ and the algorithms to compute Taylor Models for composite functions (involving the operations $+, \times, \circ, \div$) have also been formally verified.

Test-suite for CoqHensel:

- 4096 ISValP certificates to address an exponent of exp in binary64: n := 53, n' := 300, $\alpha := 13$, $\approx 100 \text{ MB}$ of data. The generation of each certificate takes $\approx 140 \text{ s}$, and the verification in Coq takes $\approx 35 \text{ s}$ (using native_compute with "bigZ × bigN" integers).
- one ISValP certificate for exp in binary128: n := 113, n' := 3000, $\alpha := 6$. Verified by Coq in 1041 s (vs. 56 s in Maple 15).

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Long-term perspectives:

• Combine TMs with some polynomial global optimization technique.

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Long-term perspectives:

- Combine TMs with some polynomial global optimization technique.
- Implement Chebyshev Models ~> tighter remainders.

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Long-term perspectives:

- Combine TMs with some polynomial global optimization technique.
- Implement Chebyshev Models ~> tighter remainders.
- Consider the possible generalization to the multivariate case.

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Long-term perspectives:

- Combine TMs with some polynomial global optimization technique.
- Implement Chebyshev Models ~> tighter remainders.
- Consider the possible generalization to the multivariate case.
- Consider alternative techniques for verifying error bounds
 - fixed-point theorems?
 - majorant series?

Short-term perspectives:

- Implement faster algorithms for the operations of polynomials.
- Combine CoqHensel & CoqApprox to devise a complete certificate checker for the TMD.
- Implement and prove more functions in CoqApprox (cosh, tan, ...)

Long-term perspectives:

- Combine TMs with some polynomial global optimization technique.
- Implement Chebyshev Models ~> tighter remainders.
- Consider the possible generalization to the multivariate case.
- Consider alternative techniques for verifying error bounds
 - fixed-point theorems?
 - majorant series?
- On-going works: formal proof of Lefèvre's algorithm.

Erik Martin-Dorel

End of the talk

Thank you for your attention!

The TaMaDi homepage: https://tamadiwiki.ens-lyon.fr/

Appendix

Certificates to address the Integer Small Value Problem

Record cert_ISValP		cert_ISValP :=	=		
{	P	:	{poly int} ((*	hence $Q(X,Y) = P(Y) - X *$
;	A	:	nat ((*	<pre>bound related to the TMD accuracy *)</pre>
;	B	:	nat ((*	<pre>bound related to the domain range *)</pre>
;	M	:	nat ((*	the modulo *)
;	α	:	nat ((*	the Coppersmith parameter *)
;	u_1	:	{bipoly int} ((*	in basis $M^{lpha-i} imes Q^i(X,Y) imes Y^j$ *)
;	u_2	:	{bipoly int} ((*	in basis $M^{lpha-i} imes Q^i(X,Y) imes Y^j$ *)
;	p	:	nat ((*	prime used by Hensel lifting *)
;	k	:	nat ((*	number of iterations *)
;	L	:	list (int * in	nt	<pre>* bool) (* list of solutions *)</pre>
}.					

Definition check_ISValP : cert_ISValP -> bool.

▲ Back

Erik Martin-Dorel

Formal proofs and certified computation in Coq for solving the TMD