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Correct rounding

The IEEE 754–2008 standard for floating-point (FP) arithmetic requires
correct rounding for +, −, ×, ÷,

√
·

A correctly-rounded operation whose entries are FP numbers must return
what we would get by infinitely-precise operation, followed by rounding.

Advantages: greatly improves accuracy, portability, as well as provability:
one can devise algorithms and proofs that use the specifications.

IEEE 754–2008 only recommends correct rounding for elementary functions
(exp, sin, . . . ) ⇒ solve the Table Maker’s Dilemma for each function.
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The Table Maker’s Dilemma (TMD) in rounding-to-nearest

R

Floating-point (FP) numbers

Breakpoint f (x) is located in this interval
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Hard-to-round case
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The Table Maker’s Dilemma (TMD) (continued)

Solving the TMD = find the hardest-to-round cases of f : the FP values x
such that f (x) is closest to a breakpoint without being a breakpoint.

The hardest-to-round case of exp for decimal64 and rounding-to-nearest is

x = 9.407822313572878× 10−2

exp(x) = 1.098645682066338 5 0000000000000000 278 . . .
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Computation of lists of hard-to-round cases

Finding all the hard-to-round cases of f over I with respect to ε > 0{
x ∈ F ∩ I

/ ∣∣∣( f (x)
ulp(f (x)) −

1
2

)
cmod 1

∣∣∣ 6 ε
}
.

f (x)

;

Integer Small Value Pbm (P ∈ Z[X ],A,B,M ∈ Z) = {x ∈ J−A,AK / |P(x) cmod M | 6 B}.
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The Stehlé–Lefèvre–Zimmermann (SLZ) algorithm

SLZ = Polynomial Approximation + Coppersmith’s technique
+ Bivariate Hensel lifting

Sophisticated algorithms with highly optimized implementations
Rely on many tools and libraries (SAGE, MPIR, FLINT, fpLLL, . . . )
Very long calculations (several years of CPU time)
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The SLZ algorithm (continued)

TMD First step: Turn the TMD into a problem involving integers

Domain splitting/Polynomial approximation/Rounding/Scaling

Integer Small Value Pbm P ∈ Z[X ], find all x ∈ J−A,AK such that |P(x) cmod M | 6 B

Q(X ,Y ) := P(X)−Y ∈ Z[X ,Y ]

Biv. Small Modular Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. Q(x, y) ≡ 0 (mod M)

Coppersmith’s technique

Biv. Small Integral Roots Find all (x, y) ∈ J−A,AK× J−B,BK s.t. v1(x, y) = 0 = v2(x, y)

Bivariate Hensel lifting
.

CoqApprox

CoqHenselCoqHensel
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CoqApprox: Context and motivations

Goal
Compute polynomial approximations of univariate functions along with
certified error bounds: for a given function f over an intervala I , compute
P, ε and formally prove that ∀x ∈ I , |f (x)− P(x)| 6 ε

aIntervals are printed in bold.

Example
For f (x) = sin x over I = [−1, 1] and a target accuracy of 2−400, we can
compute an order-80 Taylor expansion of f around 0 for the polynomial P
and take ε = 1.79× 2−402.
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CoqApprox: Mathematical setup

Data structure
A rigorous polynomial approximation (RPA) is a pair (P,∆) where P is a
polynomial in a given basis, and ∆ an interval. Typical examples of RPAs
are Taylor Models (TMs) and Chebyshev Models (CMs).

Methodology
1 For basica functions: rely on the Taylor–Lagrange formula.
2 For composite functions, we define some “arithmetic rules” for

addition, multiplication, composition, and division.
E.g.: if (P1,∆1) is a TM of f1 and (P2,∆2) is a TM of f2, then
(P1,∆1)⊕ (P2,∆2) := (P1 + P2,∆1 + ∆2) is a TM for f1 + f2.

aWe focus on D-finite (aka holonomic) functions, i.e., solutions of
homogeneous linear ordinary differential equations with polynomial coefficients.
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CoqApprox: Formalization and machine-checked proofs

Libraries used: Ssreflect [MathComponents], CoqInterval [Melquiond]

Efficiency: on the whole, the timings of the Coq implementation have
the same order of magnitude as that of the C implementation
provided in Sollya [Chevillard, Joldeş, Lauter]

Sharp bounds: thanks to the implemented algorithm called
Zumkeller’s technique, the approximation of basic functions leads to
sharp bounds in practice.
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From SLZ to certificates for Integer Small Value Problems

Program
for ISValP

Certifying-
program
for ISValP

Checker
for ISValP
in Coq

OK

Bug

in
out
cert

in

in

out

P = 36506148256923413·
(3 · 255 + (3 · 237+

(3 · 218 + X) · X) · X),
A = 24,B = 287,M = 292

x ∈ {11,−14}

(P,A,B,M, α, u1, u2, p, k,L)(P,A,B,M, α, u1, u2, p, k,L)(P,A,B,M, α, u1, u2, p, k,L)
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A verified checker for the Integer Small Value Problem

Theorem
For any certificate (P,A,B,M , α, u1, u2, p, k,L) that is accepted, we have

∀(x, y) ∈ J−A,AK× J−B,BK , P(x) ≡ y (mod M ) =⇒ (x, y) ∈ L.

The Coq proof required the formalization of several mathematical notions:
Taylor’s theorem for bivariate polynomials,
Hensel’s lemma for pairs of bivariate polynomials,
properties of the weighted norm-1 of a bivariate polynomial,
. . .
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Challenges and methodology

Formalizing efficient computation in a proof assistant is often challenging.

Approach by refinement: first, prove an abstract version of the
algorithms, then refine them to effective implementations that are
proved correct w.r.t. the abstract version.

Approach by certificates: rather than formally verifying the correctness
of an optimized implementation of a complex algorithm such as LLL,
generate some “logs” of its execution and check them independently.

Erik Martin-Dorel Formal proofs and certified computation in Coq for solving the TMD 13/16
13/16



Introduction The CoqApprox library The CoqHensel library Conclusion and perspectives

Challenges and methodology

Formalizing efficient computation in a proof assistant is often challenging.

Approach by refinement: first, prove an abstract version of the
algorithms, then refine them to effective implementations that are
proved correct w.r.t. the abstract version.

Approach by certificates: rather than formally verifying the correctness
of an optimized implementation of a complex algorithm such as LLL,
generate some “logs” of its execution and check them independently.

Erik Martin-Dorel Formal proofs and certified computation in Coq for solving the TMD 13/16
13/16



Introduction The CoqApprox library The CoqHensel library Conclusion and perspectives

Milestone

We can compute formally verified Taylor Models for the following D-finite
functions: x 7→ 1

x ,
√
·, 1√

· , exp, sin, cos,
and the algorithms to compute Taylor Models for composite functions
(involving the operations +, ×, ◦, ÷) have also been formally verified.

Test-suite for CoqHensel:
4096 ISValP certificates to address an exponent of exp in binary64:
n := 53, n′ := 300, α := 13, ≈ 100MB of data. The generation of
each certificate takes ≈ 140 s, and the verification in Coq takes ≈ 35 s
(using native_compute with “bigZ× bigN” integers).
one ISValP certificate for exp in binary128: n := 113, n′ := 3000,
α := 6. Verified by Coq in 1 041 s (vs. 56 s in Maple 15).
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Future work
Short-term perspectives:

Implement faster algorithms for the operations of polynomials.
Combine CoqHensel & CoqApprox to devise a complete certificate
checker for the TMD.
Implement and prove more functions in CoqApprox (cosh, tan, . . . )

Long-term perspectives:

Combine TMs with some polynomial global optimization technique.
Implement Chebyshev Models ; tighter remainders.
Consider the possible generalization to the multivariate case.
Consider alternative techniques for verifying error bounds

fixed-point theorems?
majorant series?

On-going works: formal proof of Lefèvre’s algorithm.
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End of the talk
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TaMaDi

Thank you for your attention!

The TaMaDi homepage:
https://tamadiwiki.ens-lyon.fr/
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Appendix

Certificates to address the Integer Small Value Problem

Record cert_ISValP :=
{ P : {poly int} (* hence Q(X ,Y ) = P(Y )−X *)
; A : nat (* bound related to the TMD accuracy *)
; B : nat (* bound related to the domain range *)
; M : nat (* the modulo *)
; α : nat (* the Coppersmith parameter *)
; u1 : {bipoly int} (* in basis Mα−i ×Qi(X ,Y )×Y j *)
; u2 : {bipoly int} (* in basis Mα−i ×Qi(X ,Y )×Y j *)
; p : nat (* prime used by Hensel lifting *)
; k : nat (* number of iterations *)
; L : list (int * int * bool) (* list of solutions *)
}.

Definition check_ISValP : cert_ISValP -> bool.

Back
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