Generic and specific abstract domains for static analysis by abstract interpretation

Antoine Miné

CNRS & École normale supérieure Paris, France

6ème Rencontres Arithmétiques de l'Informatique Mathématique 19 November 2013

Motivation: a classic example

Maiden flight of the Ariane 5 Launcher, 4 June 1996.

Motivation: a classic example

40s after launch...

(cause: overflow during an arithmetic conversion)

- software errors can be costly even simple ones (Ariane 5 failure estimated at more than 370,000,000 US\$)
- hardware redundancy does not help

(redundant computers run the same software, the same error)

• testing is not sufficient

(hardly exhaustive)

• programming in high-level "safe" languages is not sufficient (Ariane 5 coded in Ada, with arithmetic exceptions enabled)

- software errors can be costly even simple ones (Ariane 5 failure estimated at more than 370,000,000 US\$)
- hardware redundancy does not help

(redundant computers run the same software, the same error)

• testing is not sufficient

(hardly exhaustive)

• programming in high-level "safe" languages is not sufficient (Ariane 5 coded in Ada, with arithmetic exceptions enabled)

\implies use formal methods

(provide rigorous, mathematical insurance about program behaviors)

Static analysis

Semantic-Based Static Analysis				
Infers properties of the dynamic behavior of programs.				
 analyzes the source code 	(not a model)			
• soundness: no behavior is missed (full control and data coverage)				
 automatic, always terminates 				
• incomplete due to over-approximations	(false alarms)			

Applications:

- check simple properties, with low precision requirements (optimization in compilers)
- can be used to uncover bugs

(Ariane 5 bug detected by Polyspace Analyzer, late 1990s)

• can it be used for validation

(O false alarm goal; e.g, Astrée specialized analyzer, early 2000s)

Example analysis: inferring numeric invariants

```
Insertion Sort
 for i=1 to 99 do
  p := T[i]; j := i+1;
   while j <= 100 and T[j] < p do
    T[j-1] := T[j]; j := j+1;
   end;
  T[j-1] := p;
 end;
```

Example analysis: inferring numeric invariants

Interval analysis:

```
Insertion Sort
 for i=1 to 99 do
    i \in [1, 99]
   p := T[i]; j := i+1;
    i \in [1, 99], j \in [2, 100]
   while j \le 100 and T[j] \le p do
       i \in [1, 99], j \in [2, 100]
      T[j-1] := T[j]; j := j+1;
       i \in [1, 99], j \in [3, 101]
   end;
    i \in [1, 99], j \in [2, 101]
   T[j-1] := p;
 end;
```

 \Longrightarrow there is no out of bound array access

Example analysis: inferring numeric invariants

Linear inequality analysis:

```
Insertion Sort
 for i=1 to 99 do
    i \in [1, 99]
   p := T[i]; j := i+1;
    i \in [1, 99], j = i + 1
   while j <= 100 and T[j] < p do
      i \in [1, 99], i + 1 < j < 100
     T[j-1] := T[j]; j := j+1;
       i \in [1, 99], i + 2 < j < 101
   end;
    i \in [1, 99], i + 1 \le j \le 101
   T[j-1] := p;
 end;
```

Abstract interpretation

Abstract interpretation: unifying theory of program semantics

[Cousot Cousot 76]

Core principles:

- semantics are linked through abstractions (α, γ)
- abstractions can be composed and reused (abstract domain)
- semantics are expressed as fixpoints
- fixpoints can be approximated by iteration with acceleration (widening ▽)

Applications:

- compare existing semantics and analyses (unifying power)
- derive new semantics by abstraction derive computable semantics ⇒ sound static analysis

(Ifp F)

Abstract domain examples

Abstract domain examples

Abstract domain examples

Abstract domain examples

 \implies trade-off cost vs. precision and expressiveness.

Correctness proofs and false alarms

Goal: prove that the program never enters an error state

The program is correct (blue \cap red = \emptyset)

Correctness proofs and false alarms

<u>Goal:</u> prove that the program never enters an error state

The program is correct (blue $\cap \text{red} = \emptyset$) The polyhedra domain can prove the correctness (cyan $\cap \text{red} = \emptyset$)

Correctness proofs and false alarms

Goal: prove that the program never enters an error state

The program is correct (blue $\cap \text{red} = \emptyset$) The polyhedra domain can prove the correctness (cyan $\cap \text{red} = \emptyset$) The intervals domain cannot (green $\cap \text{red} \neq \emptyset$, false alarm)

Correctness proofs and false alarms

<u>Goal:</u> prove that the program never enters an error state

The program is correct (blue \cap red = \emptyset)

The polyhedra domain can prove the correctness $(cyan \cap red = \emptyset)$ The intervals domain cannot $(green \cap red \neq \emptyset$, false alarm)

Trade-off between cost and precision (number of false alarms)

Overview

• Rational domains

- concrete & abstract semantics of a toy language
- interval domain
- polyhedra domain

• Floating-point domains

- linearization of float expressions
- float polyhedra

• Binary representation aware domains

- machine integers
- memory abstraction
- binary float domains

• Application: Astrée analyzer

Rational Domains

Toy language: syntax

::=

arithmetic expressions:

V	variable V $\in \mathcal{V}$
-exp	negation
$\texttt{exp} \diamond \texttt{exp}$	binary operation: $\diamond \in \{+, -, \times, /\}$
[<i>c</i> , <i>c</i> ′]	constant range, $c,c'\in\mathbb{Q}\cup\{\pm\infty\}$
	(<i>c</i> is a shorthand for [<i>c</i> , <i>c</i>])

programs:

exp

prog	::=	V := exp	assignment
		if $\exp \bowtie 0$ then prog else prog fi	test
		while $\exp \bowtie 0$ do prog done	loop
		prog; prog	sequence

Finite set \mathcal{V} of variables, with value in \mathbb{Q} (later extended to floats \mathbb{F} and machine integers \mathbb{M})

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation

Concrete semantics

 $\underline{\text{Semantics of expressions:}} \quad \mathbb{E}[\![e]\!]: (\mathcal{V} \to \mathbb{Q}) \to \mathcal{P}(\mathbb{Q})$

The evaluation of e in ρ gives a set of values:

 $\mathbf{E}[[\mathbf{c},\mathbf{c'}]]\rho \stackrel{\text{def}}{=}$ $\{x \in \mathbb{Q} \mid c < x < c'\}$ $\mathbf{E}[\![\mathbf{V}]\!] \rho$ $\{\rho(\mathbf{V})\}$ $\mathbb{E}\llbracket - e \rrbracket \rho \qquad \stackrel{\text{def}}{=} \{ -v \mid v \in \mathbb{E}\llbracket e \rrbracket \rho \}$ $\stackrel{\text{def}}{=} \{ v_1 + v_2 \mid v_1 \in \mathbf{E} \llbracket e_1 \rrbracket \rho, v_2 \in \mathbf{E} \llbracket e_2 \rrbracket \rho \}$ $\mathbb{E}\llbracket e_1 + e_2 \rrbracket \rho$ $\stackrel{\text{def}}{=}$ $\mathbb{E}\llbracket e_1 - e_2 \rrbracket \rho$ $\{v_1 - v_2 \mid v_1 \in E[[e_1]] \rho, v_2 \in E[[e_2]] \rho\}$ $\stackrel{\text{def}}{=}$ $\mathbb{E}\llbracket e_1 \times e_2 \rrbracket \rho$ $\{v_1 \times v_2 \mid v_1 \in \mathbb{E}[\![e_1]\!] \rho, v_2 \in \mathbb{E}[\![e_2]\!] \rho\}$ def $\mathbb{E}\llbracket e_1 / e_2 \rrbracket \rho$ $\{v_1/v_2 \mid v_1 \in E[[e_1]] \rho, v_2 \in E[[e_2]] \rho, v_2 \neq 0\}$

Concrete semantics

 $\begin{array}{ll} \hline \textbf{Semantics of programs:} & \mathbb{C}\llbracket p \rrbracket : \mathcal{D} \to \mathcal{D} \\ \hline \text{where } \mathcal{D} \stackrel{\text{def}}{=} \mathcal{P}(\mathcal{V} \to \mathbb{Q}) \end{array}$

A transfer function for p defines a relation on environments $\rho \in \mathcal{D}$:

 $C[\![\mathbf{V} := e]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho[\mathbf{V} \mapsto \mathbf{v}] | \rho \in \mathcal{X}, \mathbf{v} \in E[\![e]\!] \rho \}$ $C[\![e \bowtie 0]\!] \mathcal{X} \stackrel{\text{def}}{=} \{ \rho | \rho \in \mathcal{X}, \exists \mathbf{v} \in E[\![e]\!] \rho, \mathbf{v} \bowtie 0 \}$ $C[\![b_1; b_2]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![b_2]\!] (C[\![b_1]\!] \mathcal{X})$ $C[\![if e \bowtie 0 \text{ then } b_1 \text{ else } b_2]\!] \mathcal{X} \stackrel{\text{def}}{=} (C[\![b_1]\!] \circ C[\![e \bowtie 0]\!]) \mathcal{X} \cup (C[\![b_2]\!] \circ C[\![e \not\bowtie 0]\!]) \mathcal{X}$ $C[\![while e \bowtie 0 \text{ do } b \text{ done }]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![e \not\bowtie 0]\!] (fp \lambda \mathcal{Y} . \mathcal{X} \cup (C[\![b]\!] \circ C[\![e \bowtie 0]\!]) \mathcal{Y})$

It relates the environments after the execution of a command to the environments before.

Abstract domains

- Abstract elements:
 - \mathcal{D}^{\sharp} set of computer-representable elements
 - $\gamma: \mathcal{D}^{\sharp}
 ightarrow \mathcal{D}$ concretization
 - \subseteq^{\sharp} approximation order: $\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \Longrightarrow \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp})$
- Abstract operators:
 - $\mathrm{C}^{\sharp}\llbracket c \rrbracket : \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$ and $\cup^{\sharp} : (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$

• soundness:
$$(C[[c]] \circ \gamma)(\mathcal{X}^{\sharp}) \subseteq (\gamma \circ C^{\sharp}[[c]])(\mathcal{X}^{\sharp})$$

 $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp}) \subseteq \gamma(\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp})$

- Fixpoint extrapolation
 - $\nabla : (\mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp}) \to \mathcal{D}^{\sharp}$ widening
 - soundness: $\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp}) \subseteq \gamma(\mathcal{X}^{\sharp} \lor \mathcal{Y}^{\sharp})$
 - termination: \forall sequence $(\mathcal{Y}_i^{\sharp})_{i \in \mathbb{N}}$ the sequence $\mathcal{X}_0^{\sharp} = \mathcal{Y}_0^{\sharp}, \ \mathcal{X}_{i+1}^{\sharp} = \mathcal{X}_i^{\sharp} \lor \mathcal{Y}_{i+1}^{\sharp}$ stabilizes in finite time: $\exists n < \omega, \ \mathcal{X}_{n+1}^{\sharp} = \mathcal{X}_n^{\sharp}$

Both semantics and algorithmic aspects.

Galois connection

<u>Galois connection definition:</u> $(\mathcal{D}, \subseteq) \xrightarrow{\gamma} (\mathcal{D}^{\sharp}, \subseteq^{\sharp})$

- monotonic concretization $\gamma: \mathcal{D}^{\sharp} \rightarrow \mathcal{D}$
- monotonic abstraction $\alpha : \mathcal{D} \to \mathcal{D}^{\sharp}$
- $\forall \mathcal{X} \in \mathcal{D}: \forall \mathcal{Y}^{\sharp} \in \mathcal{D}^{\sharp}: \alpha(\mathcal{X}) \subseteq^{\sharp} \mathcal{Y}^{\sharp} \iff \mathcal{X} \subseteq \gamma(\mathcal{Y}^{\sharp})$

Application: optimal abstractions

- elements $\mathcal{X} \in \mathcal{D}$ have a best abstraction: $\alpha(\mathcal{X})$ $\alpha(\mathcal{X}) = \bigcap^{\sharp} \{ \mathcal{Y}^{\sharp} | \mathcal{X} \subseteq \gamma(\mathcal{Y}^{\sharp}) \}$
- functions $F : \mathcal{D} \to \mathcal{D}$ have a best abstraction: $F^{\sharp} \stackrel{\text{def}}{=} \alpha \circ F \circ \gamma$
- however optimality does not compose $\alpha \circ (F_1 \circ F_2) \circ \gamma \subsetneq (\alpha \circ F_1 \circ \gamma) \circ (\alpha \circ F_2 \circ \gamma) \quad (\gamma \circ \alpha \supsetneq id)$
- provides semantic aspects only, no algorithm!

Abstract semantics

Given by the abstract domain:

- sound $\mathrm{C}^{\sharp}[\![V:=e]\!]$, $\mathrm{C}^{\sharp}[\![e \bowtie 0]\!]$, \cup^{\sharp}
- $\bullet\,$ sound and terminating \bigtriangledown

Derived analysis: from the concrete... $C[\![b_1; b_2]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![b_2]\!] (C[\![b_1]\!] \mathcal{X})$ $C[\![if e \bowtie 0 \text{ then } b_1 \text{ else } b_2]\!] \mathcal{X} \stackrel{\text{def}}{=} (C[\![b_1]\!] \circ C[\![e \bowtie 0]\!]) \mathcal{X} \cup (C[\![b_2]\!] \circ C[\![e \bowtie 0]\!]) \mathcal{X}$ $C[\![while e \bowtie 0 \text{ do } b \text{ done }]\!] \mathcal{X} \stackrel{\text{def}}{=} C[\![e \bowtie 0]\!] (Ifp \lambda \mathcal{Y} . \mathcal{X} \cup (C[\![b]\!] \circ C[\![e \bowtie 0]\!]) \mathcal{Y})$

Abstract semantics

Given by the abstract domain:

- sound $\mathrm{C}^{\sharp}[\![V:=e]\!]$, $\mathrm{C}^{\sharp}[\![e \bowtie 0]\!]$, \cup^{\sharp}
- $\bullet\,$ sound and terminating \bigtriangledown

Derived analysis: ... to the abstract $C^{\sharp} \llbracket b_{1}; b_{2} \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} C^{\sharp} \llbracket b_{2} \rrbracket (C^{\sharp} \llbracket b_{1} \rrbracket \mathcal{X}^{\sharp})$ $C^{\sharp} \llbracket \text{if } e \bowtie 0 \text{ then } b_{1} \text{ else } b_{2} \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} (C^{\sharp} \llbracket b_{1} \rrbracket \circ C^{\sharp} \llbracket e \bowtie 0 \rrbracket) \mathcal{X}^{\sharp} \cup^{\sharp} (C^{\sharp} \llbracket b_{2} \rrbracket \circ C^{\sharp} \llbracket e \bowtie 0 \rrbracket) \mathcal{X}^{\sharp}$ $C^{\sharp} \llbracket \text{while } e \bowtie 0 \text{ do } b \text{ done } \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} C^{\sharp} \llbracket e \bowtie 0 \rrbracket (\lim \lambda \mathcal{Y}^{\sharp}. \mathcal{Y}^{\sharp} \bigtriangledown (C^{\sharp} \llbracket b \rrbracket) \circ C^{\sharp} \llbracket e \bowtie 0 \rrbracket) \mathcal{Y}^{\sharp})$

The derived analysis is sound and terminates.

RAIM 2013 - 19 November 2013

F	Rational Domains	Intervals domain

Intervals domain

Intervals lattice

 $\mathcal{B}^{\sharp} \stackrel{\text{def}}{=} \{ [a, b] \mid a \in \mathbb{Q} \cup \{ -\infty \}, \ b \in \mathbb{Q} \cup \{ +\infty \}, \ a \le b \}$ [Cousot 76]

$$\begin{array}{lll} \hline \textbf{Galois connection:} & \mathcal{P}(\mathbb{Q}) \xleftarrow{\gamma_b}{\alpha_b} \mathcal{B}^{\sharp} \cup \{\perp^{\sharp}\} \\ & \gamma([a,b]) & \stackrel{\text{def}}{=} & \{x \in \mathbb{Q} \mid a \leq x \leq b\} \\ & \alpha(\mathcal{X}) & \stackrel{\text{def}}{=} & \left\{ \begin{array}{cc} \perp^{\sharp} & \text{if } \mathcal{X} = \emptyset \\ & [\min \mathcal{X}, \max \mathcal{X}] & \text{otherwise} \end{array} \right. \end{array}$$

(α is not always defined, but $\alpha \circ {\it F} \circ \gamma$ is generally defined)

Partial order:

$$\begin{array}{cccc} [a,b] \subseteq^{\sharp} [c,d] & \stackrel{\text{def}}{\longleftrightarrow} & a \geq c \text{ and } b \leq d \\ & & & & \\ & & & \\ \hline & & & \\ [a,b] \cup^{\sharp} [c,d] & \stackrel{\text{def}}{=} & [\min(a,c),\max(b,d)] \\ [a,b] \cap^{\sharp} [c,d] & \stackrel{\text{def}}{=} & \left\{ \begin{array}{c} [\max(a,c),\min(b,d)] & \text{if } \max \leq \min \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right. \end{array}$$

Derived abstract domain

Pointwise lifting to an abstraction of $\mathcal{P}(\mathcal{V} \to \mathbb{Q})$:

$$\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} (\mathcal{V} \to \mathcal{B}^{\sharp}) \cup \{ \bot^{\sharp} \}$$

$$\mathsf{T}^{\sharp} \stackrel{\text{def}}{=} \lambda \mathsf{V}.\mathsf{T}^{\sharp}$$

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{\Longrightarrow} \mathcal{X}^{\sharp} = \bot^{\sharp} \lor (\mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \neq \bot^{\sharp} \land \forall \mathsf{V}: \mathcal{X}^{\sharp}(\mathsf{V}) \subseteq^{\sharp} \mathcal{Y}^{\sharp}(\mathsf{V}))$$

$$\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \begin{cases} \mathcal{Y}^{\sharp} & \text{if } \mathcal{X}^{\sharp} = \bot^{\sharp} \\ \mathcal{X}^{\sharp} & \text{if } \mathcal{Y}^{\sharp} = \bot^{\sharp} \\ \lambda \mathsf{V}.\mathcal{X}^{\sharp}(\mathsf{V}) \cup^{\sharp} \mathcal{Y}^{\sharp}(\mathsf{V}) & \text{otherwise} \end{cases}$$

$$\mathcal{X}^{\sharp} \cap^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \begin{cases} \bot^{\sharp} & \text{if } \mathcal{X}^{\sharp} = \bot^{\sharp} \\ \bot^{\sharp} & \text{if } \exists \mathsf{V}: \mathcal{X}^{\sharp}(\mathsf{V}) \cap^{\sharp} \mathcal{Y}^{\sharp}(\mathsf{V}) = \bot^{\sharp} \\ \lambda \mathsf{V}.\mathcal{X}^{\sharp}(\mathsf{V}) \cap^{\sharp} \mathcal{Y}^{\sharp}(\mathsf{V}) & \text{otherwise} \end{cases}$$

Interval abstract arithmetic operators

Based on interval arithmetic [Moore 66]

$$[c, c']^{\sharp} \stackrel{\text{def}}{=} [c, c']$$

$$-^{\sharp} [a, b] \stackrel{\text{def}}{=} [-b, -a]$$

$$[a, b] +^{\sharp} [c, d] \stackrel{\text{def}}{=} [a + c, b + d]$$

$$[a, b] -^{\sharp} [c, d] \stackrel{\text{def}}{=} [a - d, b - c]$$

$$[a, b] \times^{\sharp} [c, d] \stackrel{\text{def}}{=} [\min(ac, ad, bc, bd), \max(ac, ad, bc, bd)]$$

$$[a, b] /^{\sharp} [c, d] \stackrel{\text{def}}{=} \cdots$$
where $\pm \infty \times 0 = 0$.

Interval abstract assignment

 $\begin{array}{cccc} \mbox{Abstract evaluation of expressions:} & E^{\sharp} \llbracket e \rrbracket : \mathcal{D}^{\sharp} \to \mathcal{B}^{\sharp} \\ \hline E^{\sharp} \llbracket e \rrbracket \bot^{\sharp} & \stackrel{def}{=} & \bot^{\sharp} \\ if \ \mathcal{X}^{\sharp} \neq \bot^{\sharp} : \\ E^{\sharp} \llbracket [c, c'] \rrbracket \mathcal{X}^{\sharp} & \stackrel{def}{=} & [c, c']^{\sharp} \\ E^{\sharp} \llbracket v \rrbracket \mathcal{X}^{\sharp} & \stackrel{def}{=} & \mathcal{X}^{\sharp} (v) \\ E^{\sharp} \llbracket -e \rrbracket \mathcal{X}^{\sharp} & \stackrel{def}{=} & -^{\sharp} E^{\sharp} \llbracket e \rrbracket \mathcal{X}^{\sharp} \\ E^{\sharp} \llbracket e_{1} \diamond e_{2} \rrbracket \mathcal{X}^{\sharp} & \stackrel{def}{=} & E^{\sharp} \llbracket e_{1} \rrbracket \mathcal{X}^{\sharp} \diamond^{\sharp} E^{\sharp} \llbracket e_{2} \rrbracket \mathcal{X}^{\sharp} \end{array}$

Abstract assignment:

$$\begin{split} \mathrm{C}^{\sharp} \llbracket \mathtt{V} := e \rrbracket \, \mathcal{X}^{\sharp} & \stackrel{\mathrm{def}}{=} \begin{cases} \bot^{\sharp} & \text{if } \mathcal{V}^{\sharp} = \bot^{\sharp} \\ \mathcal{X}^{\sharp} \llbracket \mathtt{V} & \mapsto \mathcal{V}^{\sharp} \end{bmatrix} & \text{otherwise} \\ \end{split}$$
 where $\mathcal{V}^{\sharp} = \mathrm{E}^{\sharp} \llbracket e \rrbracket \, \mathcal{X}^{\sharp}.$

<u>Note:</u> C^{\sharp} $\llbracket V := e \rrbracket$ may not be optimal, even though each \diamond^{\sharp} is.

Interval abstract tests

If $\mathcal{X}^{\sharp}(X) = [a, b]$ and $\mathcal{X}^{\sharp}(Y) = [c, d]$, we can define:

$$C^{\sharp}\llbracket X - c \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \begin{cases} \perp^{\sharp} & \text{if } a > c \\ \mathcal{X}^{\sharp}\llbracket X \mapsto [a, \min(b, c)] \end{bmatrix} & \text{otherwise} \end{cases}$$

$$C^{\sharp}\llbracket X - Y \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \begin{cases} \perp^{\sharp} & \text{if } a > d \\ \mathcal{X}^{\sharp}\llbracket X \mapsto [a, \min(b, d)], & \text{otherwise} \\ Y \mapsto [\max(c, a), d] \end{bmatrix}$$

<u>General case:</u> constraint programming (HC4)

Note: fall-back operators

•
$$\mathrm{C}^{\sharp} \llbracket e \Join 0 \rrbracket \mathcal{X}^{\sharp} = \mathcal{X}^{\sharp}$$
 is always sound

•
$$\mathrm{C}^{\sharp}[\![\mathfrak{X} := e \,]\!] \, \mathcal{X}^{\sharp} = \mathcal{X}^{\sharp}[\mathfrak{X} \mapsto \top^{\sharp}]$$
 is always sound

Interval widening

Widening on non-relational domains:

Given a value widening $\nabla : \mathcal{B}^{\sharp} \times \mathcal{B}^{\sharp} \to \mathcal{B}^{\sharp}$, we extend it point-wisely into a widening $\nabla : \mathcal{D}^{\sharp} \times \mathcal{D}^{\sharp} \to \mathcal{D}^{\sharp}$: $\mathcal{X}^{\sharp} \nabla \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \lambda \mathbb{V}. \mathcal{X}^{\sharp}(\mathbb{V}) \nabla \mathcal{Y}^{\sharp}(\mathbb{V})$

Interval widening example:

$$\begin{array}{cccc} \bot^{\sharp} & \nabla & X^{\sharp} & \stackrel{\mathrm{def}}{=} & X^{\sharp} \\ [a,b] & \nabla & [c,d] & \stackrel{\mathrm{def}}{=} & \left[\left\{ \begin{array}{ccc} a & \mathrm{if} \ a \leq c \\ -\infty & \mathrm{otherwise} \end{array} \right, \left\{ \begin{array}{ccc} b & \mathrm{if} \ b \geq d \\ +\infty & \mathrm{otherwise} \end{array} \right] \right. \end{array} \right.$$

Unstable bounds are set to $\pm\infty$

Analysis with widening example

X:=0; while • X<40 do X:=X+3 done Rational Domains

Intervals domain

Analysis with widening example

X:=0; while • X<40 do X:=X+3 done

We must compute: $C^{\sharp}[\![X \ge 40]\!] (\lim \lambda \mathcal{Y}^{\sharp}.\mathcal{Y}^{\sharp} \bigtriangledown (\mathcal{X}^{\sharp} \cup^{\sharp} C^{\sharp}[\![X := X+3]\!] (C^{\sharp}[\![X < 40]\!] \mathcal{Y}^{\sharp})))$ • $\mathcal{Y}_{0}^{\sharp} = \mathcal{X}^{\sharp} = [0, 0]$ • $\mathcal{Y}_{1}^{\sharp} = \mathcal{Y}_{0}^{\sharp} \bigtriangledown (\mathcal{X}^{\sharp} \cup^{\sharp} (\mathcal{Y}_{0}^{\sharp} +^{\sharp} [3, 3])) = [0, 0] \bigtriangledown ([0, 0] \cup^{\sharp} [3, 3]) = [0, +\infty]$ • $\mathcal{Y}_{2}^{\sharp} = \mathcal{Y}_{1}^{\sharp} \bigtriangledown (\mathcal{X}^{\sharp} \cup^{\sharp} (\mathcal{Y}_{1}^{\sharp} +^{\sharp} [3, 3])) = [0, +\infty] \lor ([0, 0] \cup^{\sharp} [3, 42]) = \mathcal{Y}_{1}^{\sharp}$ • $C^{\sharp}[\![X \ge 40]\!] (\mathcal{Y}_{2}^{\sharp}) = [42, +\infty]$

Decreasing iterations: to improve the precision

- after stabilization, continue iterating without \triangledown (use $\cap)$
- in our case, $\mathcal{Y}_3^{\sharp} = [0, 42]$, so $\mathrm{C}^{\sharp}[\![X \ge 40]\!](\mathcal{Y}_3^{\sharp}) = [40, 42]$

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation
Polyhedra Domain

Rational Domains

The need for relational domains

Non-relation domains cannot represent variable relationships

Rational Domains

The need for relational domains

Non-relation domains cannot represent variable relationships

Rate limiter	
<pre>Y:=0; while • true do X:=[-128,128]; D:=[0,16]; S:=Y; Y:=X; R:=X-S; if R<=-D then Y:=S-D fi; if R>=D then Y:=S+D fi done</pre>	X: input signal Y: output signal S: last output R: delta Y-S D: max. allowed for R

Iterations in the interval domain (without widening):

In fact, $Y \in [-128, 128]$ always holds.

To prove that, e.g. Y ≥ -128 , we must be able to:

- represent the properties R = X S and $R \leq -D$
- combine them to deduce $S X \ge D$, and then $Y = S D \ge X$

Polyhedra domain

Domain proposed by [Cousot Halbwachs 78] to infer conjunctions of affine inequalities $\bigwedge_i (\sum_{i=1}^n \alpha_{ij} \mathbf{V}_i \ge \beta_j)$.

Abstract elements:

• LinCons $\stackrel{\text{def}}{=}$ affine constraints over \mathcal{V} with coefficients in \mathbb{Q} • $\mathcal{D}^{\sharp} \stackrel{\text{def}}{=} \mathcal{P}_{\text{finite}}(\text{LinCons})$

Concretization:

$$\gamma(\mathcal{X}^{\sharp}) \stackrel{\mathrm{\tiny def}}{=} \set{
ho \in \mathcal{V} o \mathbb{Q} \mid orall c \in \mathcal{X}^{\sharp},
ho \models c}$$

- $\gamma(\mathcal{X}^{\sharp})$ is a closed convex polyhedron of $(\mathcal{V} \to \mathbb{Q}) \simeq \mathbb{Q}^{|\mathcal{V}|}$
- $\gamma(\mathcal{X}^{\sharp})$ may be empty, bounded, or unbounded
- γ is not injective

Polyhedra representations

- No memory bound on the representations (even minimal ones)
- No best abstraction α
- Dual representation using generators (double description method)

RAIM 2013 - 19 November 2013

Polyhedra algorithms

Fourier-Motzkin elimination:

Fourier($\mathcal{X}^{\sharp}, \mathbb{V}_k$) eliminates \mathbb{V}_k from all the constraints in \mathcal{X}^{\sharp} :

$$\begin{aligned} & \textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_k) \stackrel{\text{def}}{=} \\ & \{ \left(\sum_i \alpha_i \mathbb{V}_i \geq \beta \right) \in \mathcal{X}^{\sharp} \mid \alpha_k = \mathbf{0} \} \cup \\ & \{ \left(-\alpha_k^- \right) \mathbf{c}^+ + \alpha_k^+ \mathbf{c}^- \mid \mathbf{c}^+ = \left(\sum_i \alpha_i^+ \mathbb{V}_i \geq \beta^+ \right) \in \mathcal{X}^{\sharp}, \ \alpha_k^+ > \mathbf{0}, \\ & \mathbf{c}^- = \left(\sum_i \alpha_i^- \mathbb{V}_i \geq \beta^- \right) \in \mathcal{X}^{\sharp}, \ \alpha_k^- < \mathbf{0} \\ \end{aligned}$$

Semantics

$$\gamma(\textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_{k})) = \{ \rho[\mathbb{V}_{k} \mapsto v] \mid v \in \mathbb{Q}, \ \rho \in \gamma(\mathcal{X}^{\sharp}) \}$$

i.e., forget the value of V_k

Polyhedra algorithms

Linear programming:

simplex
$$(\mathcal{X}^{\sharp}, \vec{\alpha}) \stackrel{\text{def}}{=} \min \left\{ \sum_{i} \alpha_{i} \rho(\mathbf{V}_{i}) \mid \rho \in \gamma(\mathcal{X}^{\sharp}) \right\}$$

Application: remove redundant constraints:

for each
$$c = (\sum_i \alpha_i V_i \ge \beta) \in \mathcal{X}^{\sharp}$$

if $\beta \le simplex(\mathcal{X}^{\sharp} \setminus \{c\}, \vec{\alpha})$, then remove c from \mathcal{X}^{\sharp}

(e.g., *Fourier* causes a quadratic growth in constraint number, most of which are redundant)

Note: calling *simplex* many times can be costly

- use fast syntactic checks first
- check against the bounding-box first
- use *simplex* as a last resort

Rational Domains

Polyhedra Domain

Polyhedra abstract operators

$\begin{array}{lll} & \underbrace{\mathbf{Order:}}_{\mathcal{X}^{\sharp}} \subseteq^{\sharp} & \underbrace{\mathcal{X}^{\sharp}}_{\stackrel{\mathrm{def}}{\longrightarrow}} & \forall (\sum_{i} \alpha_{i} \mathbf{V}_{i} \geq \beta) \in \mathcal{Y}^{\sharp}, \ \textit{simplex}(\mathcal{X}^{\sharp}, \vec{\alpha}) \geq \beta \\ & \stackrel{\mathrm{def}}{\stackrel{\mathrm{def}}{\longrightarrow}} & \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}) \\ & \mathcal{X}^{\sharp} =^{\sharp} \mathcal{Y}^{\sharp} & \stackrel{\mathrm{def}}{\stackrel{\mathrm{def}}{\longrightarrow}} & \mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \wedge \mathcal{Y}^{\sharp} \subseteq^{\sharp} \mathcal{X}^{\sharp} \end{array}$

Polyhedra abstract operators (cont.)

Convex hull:

- Express a point $\vec{V} \in \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}$ as a convex combination: $\vec{V} = \sigma \vec{X} + \sigma' \vec{Y}$ for $\vec{X} \in \mathcal{X}^{\sharp}$, $\vec{Y} \in \mathcal{Y}^{\sharp}$, $\sigma + \sigma' = 1$, $\sigma, \sigma' \ge 0$
- as $\sigma \vec{\mathbf{X}} + \sigma' \vec{\mathbf{Y}}$ is quadratic

we consider instead: $\vec{\mathbf{V}} = \vec{\mathbf{X}} + \vec{\mathbf{Y}}$ with $\vec{\mathbf{X}}/\sigma \in \mathcal{X}^{\sharp}$, $\vec{\mathbf{Y}}/\sigma' \in \mathcal{Y}^{\sharp}$ i.e., $\vec{\mathbf{X}} \in \sigma \mathcal{X}^{\sharp}$, $\vec{\mathbf{Y}} \in \sigma' \mathcal{Y}^{\sharp}$

(adds closure points on unbounded polyhedra)

Formally:

$$\begin{aligned} \mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp} \stackrel{\text{def}}{=} \\ Fourier(\left\{ \left(\sum_{j} \alpha_{j} X_{j} - \beta \sigma \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} V_{j} \geq \beta \right) \in \mathcal{X}^{\sharp} \right\} \quad \cup \\ \left\{ \left(\sum_{j} \alpha_{j} Y_{j} - \beta \sigma' \geq 0 \right) \mid \left(\sum_{j} \alpha_{j} V_{j} \geq \beta \right) \in \mathcal{Y}^{\sharp} \right\} \quad \cup \\ \left\{ V_{j} = X_{j} + Y_{j} \mid V_{j} \in \mathcal{V} \right\} \cup \left\{ \sigma \geq 0, \ \sigma' \geq 0, \ \sigma + \sigma' = 1 \right\}, \\ \left\{ X_{j}, Y_{j} \mid V_{j} \in \mathcal{V} \right\} \cup \left\{ \sigma, \sigma' \right\}) \\ \\ \begin{bmatrix} \text{Benoi et al. 96} \end{bmatrix} \end{aligned}$$

Polyhedra abstract operators (cont.)

Precise abstract commands: (exact) $C^{\sharp} \llbracket \sum_{i} \alpha_{i} \mathbb{V}_{i} + \beta \leq 0 \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} \mathcal{X}^{\sharp} \cup \{ (\sum_{i} \alpha_{i} \mathbb{V}_{i} + \beta \leq 0) \}$ $C^{\sharp} \llbracket \mathbb{V}_{j} := [-\infty, +\infty] \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} Fourier(\mathcal{X}^{\sharp}, \mathbb{V}_{j}))$ $C^{\sharp} \llbracket \mathbb{V}_{j} := \sum_{i} \alpha_{i} \mathbb{V}_{i} + \beta^{\sharp} \rrbracket \mathcal{X}^{\sharp} \stackrel{\text{def}}{=} subst(\mathbb{V} \mapsto \mathbb{V}_{i}, Fourier((\mathcal{X}^{\sharp} \cup \{\mathbb{V} = \sum_{i} \alpha_{i} \mathbb{V}_{i} + \beta\}), \mathbb{V}_{j}))$

Fallback abstract commands: (coarse but sound)

$$\mathrm{C}^{\sharp}[\![\ e \leq \mathbf{0} \]\!] \ \mathcal{X}^{\sharp} \ \stackrel{\mathrm{def}}{=} \ \mathcal{X}^{\sharp}$$

$$\mathrm{C}^{\sharp}[\![\mathbf{V}_{j} := \mathbf{e}]\!] \mathcal{X}^{\sharp} \stackrel{\mathrm{def}}{=} \mathit{Fourier}(\mathcal{X}^{\sharp}, \mathbf{V}_{j})$$

alternate solution:

apply interval abstract commands to the bounding box

Static analysis by abstract interpretation

Polyhedra widening

Classic widening \triangledown in \mathcal{D}^{\sharp}

$$egin{aligned} \mathcal{X}^{\sharp} igarlepsilon \mathcal{Y}^{\sharp} & \stackrel{ ext{def}}{=} & \left\{ \begin{array}{c} c \in \mathcal{X}^{\sharp} \mid \mathcal{Y}^{\sharp} \subseteq^{\sharp} \left\{ c
ight\}
ight\} \quad \cup \ & \left\{ \begin{array}{c} c \in \mathcal{Y}^{\sharp} \mid \exists c' \in \mathcal{X}^{\sharp}, \ \mathcal{X}^{\sharp} =^{\sharp} (\mathcal{X}^{\sharp} \setminus c') \cup \left\{ c
ight\}
ight\} \end{aligned}$$

• suppress unstable constraints $c \in \mathcal{X}^{\sharp}, \mathcal{Y}^{\sharp} \not\subseteq^{\sharp} \{c\}$

add back constraints c ∈ 𝒴[#] equivalent to those in 𝒯[#]
 i.e., when ∃c' ∈ 𝒯[#], 𝒯[#] =[#] (𝒯[#] \ c') ∪ {c}.
 (𝒯[#] and 𝒴[#] must have no redundant constraint)

Floating-point uses

Two independent problems:

• Implement the analyzer using floating-point

goal: trade precision for efficiency

exact rational arithmetic can be costly coefficients can grow large (polyhedra)

• Analyze floating-point programs

goal: catch run-time errors caused by rounding (overflow, division by $0, \ldots$)

Also: a floating-point analyzer for floating-point programs.

Challenge: how to stay sound?

Floating-point computations

The set of floating-point numbers is not closed under +, -, \times , /:

- every result is rounded to a representable float,
- an overflow or division by 0 generates $+\infty$ or $-\infty$ (overflow);
- small numbers are truncated to +0 or -0 (underflow);
- some operations are invalid $(0/0, (+\infty) + (-\infty))$, etc.) and return *NaN*.

Observable semantics:

- overflows and NaNs halt the program with an error \mathcal{O} ,
- rounding and underflow are not errors,
- we do not distinguish between +0 and -0.
- $\implies \text{ variable values live in a finite subset } \mathbb{F} \text{ of } \mathbb{Q},$ expression values live in $\mathbb{F} \cup \{\mathcal{O}\}.$

Floating-point expressions

Floating-point expressions exp_f

$$\begin{array}{ll} \exp_{f} & ::= & [c,c'] & \text{ constant range } c,c' \in \mathbb{F}, \ c \leq c' \\ & | & \mathbb{V} & \text{ variable } \mathbb{V} \in \mathcal{V} \\ & | & \ominus \exp_{f} & \text{ negation} \\ & | & \exp_{f} \circ_{r} \exp_{f} & \text{ operator } \odot \in \{\oplus, \ominus, \otimes, \oslash\} \end{array}$$

(we use circled operators to distinguish them from operators in $\mathbb{Q})$

Concrete semantics of expressions

Semantics of rounding: R_r : $\mathbb{Q} \to \mathbb{F} \cup \{\mathcal{O}\}$.

Example definition:

$$R_{+\infty}(x) \stackrel{\text{def}}{=} \begin{cases} \min \{ y \in \mathbb{F} \mid y \ge x \} & \text{if } x \le Mf \\ \mathcal{O} & \text{if } x > Mf \end{cases}$$
$$R_{-\infty}(x) \stackrel{\text{def}}{=} \begin{cases} \max \{ y \in \mathbb{F} \mid y \le x \} & \text{if } x \ge -Mf \\ \mathcal{O} & \text{if } x < -Mf \end{cases}$$

Notes:

- $\forall x, r, R_{-\infty}(x) \leq R_r(x) \leq R_{+\infty}(x)$
- $\forall r, R_r$ is monotonic

Concrete semantics of expressions (cont.)

$$\begin{split} & \mathbb{E}\llbracket e_{f} \rrbracket : (\mathcal{V} \to \mathbb{F}) \to \mathcal{P}(\mathbb{F} \cup \{\mathcal{O}\}) \quad (\text{expression semantics}) \\ & \mathbb{E}\llbracket \mathbb{V} \rrbracket \rho \quad \stackrel{\text{def}}{=} \{ \ \rho(\mathbb{V}) \} \\ & \mathbb{E}\llbracket [c, c'] \rrbracket \rho \quad \stackrel{\text{def}}{=} \{ \ x \in \mathbb{F} \ | \ c \leq x \leq c' \} \\ & \mathbb{E}\llbracket \ominus e_{f} \rrbracket \rho \quad \stackrel{\text{def}}{=} \{ \ -x \ | \ x \in \mathbb{E}\llbracket e_{f} \rrbracket \rho \cap \mathbb{F} \} \cup (\{\mathcal{O}\} \cap \mathbb{E}\llbracket e_{f} \rrbracket \rho) \\ & \mathbb{E}\llbracket e_{f} \odot_{r} e'_{f} \rrbracket \rho \stackrel{\text{def}}{=} \\ & \{ \ R_{r}(x \cdot y) \ | \ x \in \mathbb{E}\llbracket e_{f} \rrbracket \rho \cap \mathbb{F}, \ y \in \mathbb{E}\llbracket e'_{f} \rrbracket \rho \cap \mathbb{F} \} \cup \\ & \{ \ \mathcal{O} \ | \ \text{if } \mathcal{O} \in \mathbb{E}\llbracket e_{f} \rrbracket \rho \cup \mathbb{E}\llbracket e'_{f} \rrbracket \rho \} \\ & \{ \ \mathcal{O} \ | \ \text{if } \mathcal{O} \in \mathbb{E}\llbracket e'_{f} \rrbracket \rho \text{ and } \odot = \oslash \} \end{split} \end{split}$$

$$\begin{aligned} & \mathbb{C}\llbracket c \rrbracket : \mathcal{P}(\mathcal{V} \to \mathbb{F}) \to \mathcal{P}((\mathcal{V} \to \mathbb{F}) \cup \{\mathcal{O}\}) \quad (\text{command semantics}) \\ & \mathbb{C}\llbracket x := e_{f} \rrbracket \mathcal{X} \quad \stackrel{\text{def}}{=} \{ \ \rho \ [\ x \mapsto v \end{bmatrix} | \ \rho \in \mathcal{X}, \ v \in \mathbb{E}\llbracket e_{f} \rrbracket \rho \cap \mathbb{F} \} \\ & \cup (\{\mathcal{O}\} \cap \mathbb{E}\llbracket e_{f} \rrbracket \mathcal{X}) \end{aligned} \end{aligned}$$

Floating-point interval domain

- We suppose r is unknown and assume a worst case rounding.
- Soundness stems from the monotonicity of $R_{-\infty}$ and $R_{+\infty}$.
- Abstract operators also use float arithmetic (efficiency).

Error management

If some bound in $\mathrm{E}^{\sharp}[\![\exp_{f}]\!]$ evaluates to \mathcal{O} , we

- report the error to the user, and
- continue the evaluation with \top^{\sharp} .

RAIM 2013 - 19 November 2013

Expression linearization

Floating-point issues in relational domains

Relational domains assume many powerful properties on \mathbb{Q} : associativity, distributivity,... that are not true on \mathbb{F} !

Example: Fourier-Motzkin elimination

 $\begin{array}{lll} \mathbf{X} - \mathbf{Y} \leq \mathbf{c} & \wedge & \mathbf{Y} - \mathbf{Z} \leq \mathbf{d} \implies & \mathbf{X} - \mathbf{Z} \leq \mathbf{c} + \mathbf{d} \\ \mathbf{X} \ominus_n \mathbf{Y} \leq \mathbf{c} & \wedge & \mathbf{Y} \ominus_n \mathbf{Z} \leq \mathbf{d} \not\implies & \mathbf{X} \ominus_n \mathbf{Z} \leq \mathbf{c} \oplus_n \mathbf{d} \\ & (\mathbf{X} = 1, \, \mathbf{Y} = 10^{38}, \, \mathbf{Z} = -1, \, \mathbf{c} = \mathbf{X} \ominus_n \mathbf{Y} = -10^{38}, \\ & \mathbf{d} = \mathbf{Y} \ominus_n \mathbf{Z} = 10^{38}, \, \mathbf{c} \oplus_n \mathbf{d} = 0, \, \mathbf{X} \ominus_n \mathbf{Z} = 2 > 0) \end{array}$

We cannot manipulate float expressions as easily as rational ones! Solution:

keep representing and manipulating rational expressions

- abstract float expressions from programs into rational ones
- feed them to a rational abstract domain
- (optional) implement the rational domain using floats

Affine interval forms

We put expressions in affine interval form: [Miné 04] $\exp_{\ell} ::= [a_0, b_0] + \sum_k [a_k, b_k] \times V_k$

Semantics:

$$\mathbb{E}\llbracket e_{\ell} \rrbracket \rho \stackrel{\text{def}}{=} \{ c_0 + \sum_k c_k \times \rho(\mathbf{V}_k) \mid \forall i, c_i \in [a_i, b_i] \}$$

(evaluated in \mathbb{Q})

Advantages:

- affine expressions are easy to manipulate
- interval coefficients allow non-determinism in expressions, hence, the opportunity for abstraction
- intervals can easily model rounding errors
- easy to design algorithms for $C^{\sharp}[\![X := e_{\ell}]\!]$ and $C^{\sharp}[\![e_{\ell} \le 0]\!]$ in most domains

Affine interval form algebra

Operations on affine interval forms:

- adding \boxplus and subtracting \boxminus two forms
- multiplying \boxtimes and dividing \boxtimes a form by an interval

Using interval arithmetic \oplus^{\sharp} , \oplus^{\sharp} , \otimes^{\sharp} , \oslash^{\sharp} :

 $(i_0 + \sum_k i_k \times \mathbb{V}_k) \boxplus (i'_0 + \sum_k i'_k \times \mathbb{V}_k) \stackrel{\text{def}}{=} (i_0 \oplus^{\sharp} i'_0) + \sum_k (i_k \oplus^{\sharp} i'_k) \times \mathbb{V}_k$

$$i \boxtimes (i_0 + \sum_k i_k \times \mathbb{V}_k) \stackrel{\text{def}}{=} (i \otimes^{\sharp} i_0) + \sum_k (i \otimes^{\sharp} i_k) \times \mathbb{V}_k$$
...

Projection: $\pi_k : \mathcal{D}^{\sharp} \to \exp_{\ell}$

We suppose we are given an abstract interval projection operator π_k such that:

 $\pi_k(\mathcal{X}^{\sharp}) = [a, b] \text{ such that } [a, b] \supseteq \{ \ \rho(\mathbb{V}_k) \mid \rho \in \gamma(\mathcal{X}^{\sharp}) \ \}.$

Linearization of rational expressions

 $\underline{\text{Intervalization:}} \quad \iota: (\exp_{\ell} \times \mathcal{D}^{\sharp}) \to \exp_{\ell}$

Intervalization flattens the expression into a single interval:

$$\boldsymbol{\iota}(i_0 + \sum_k i_k \times \mathbb{V}_k, \, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} i_0 \, \oplus^{\sharp} \, \sum_k^{\sharp} \, (i_k \otimes^{\sharp} \pi_k(\mathcal{X}^{\sharp})).$$

 $\label{eq:linearization without rounding errors:} \quad \ell: (\exp \times \mathcal{D}^{\sharp}) \to \exp_{\ell}$ Defined by induction on the syntax of expressions:

- $\ell(\mathtt{V}, \mathcal{X}^{\sharp}) \stackrel{\mathrm{def}}{=} [1, 1] \times \mathtt{V}$
- $\ell([a, b], \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} [a, b]$
- $\ell(e_1+e_2,\mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1,\mathcal{X}^{\sharp}) \boxplus \ell(e_2,\mathcal{X}^{\sharp})$
- $\ell(e_1 e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxminus \ell(e_2, \mathcal{X}^{\sharp})$
- $\ell(e_1/e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \ell(e_1, \mathcal{X}^{\sharp}) \boxtimes \iota(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp})$
- $\ell(e_1 \times e_2, \mathcal{X}^{\sharp}) \stackrel{\text{def}}{=} \operatorname{can} \operatorname{be} \begin{cases} \operatorname{either} & \iota(\ell(e_1, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_2, \mathcal{X}^{\sharp}) \\ \operatorname{or} & \iota(\ell(e_2, \mathcal{X}^{\sharp}), \mathcal{X}^{\sharp}) \boxtimes \ell(e_1, \mathcal{X}^{\sharp}) \end{cases}$

Linearization of floating-point expressions

Rounding an affine interval form: (32-bit single precision)

• if the result is normalized: we have a relative error ε with magnitude 2^{-23} :

$$\varepsilon([a_0, b_0] + \sum_k [a_k, b_k] \times V_k) \stackrel{\text{def}}{=} \\ \max(|a_0|, |b_0|) \times [-2^{-23}, 2^{-23}] + \\ \sum_k (\max(|a_k|, |b_k|) \times [-2^{-23}, 2^{-23}] \times V_k)$$

• if the result is denormalized, we have an absolute error $\omega \stackrel{\text{def}}{=} [-2^{-159}, 2^{-159}].$

 \Longrightarrow we sum these two sources of rounding errors

Applications of the floating-point linearization

Soundness of the linearization

 $\forall e, \forall \mathcal{X}^{\sharp} \in \mathcal{D}^{\sharp}, \forall \rho \in \gamma(\mathcal{X}^{\sharp}),$ if $\mathcal{O} \notin \mathbb{E}[\![e]\!] \rho$, then $\mathbb{E}[\![e]\!] \rho \subseteq \mathbb{E}[\![\ell(e, \mathcal{X}^{\sharp})]\!] \rho$

Application: $C^{\sharp} \llbracket V := e \rrbracket \mathcal{X}^{\sharp}$

- check that $\mathcal{O} \notin \mathrm{E}[\![e]\!] \rho$ for $\rho \in \gamma(\mathcal{X}^{\sharp})$ with interval arithmetic
- compute $\mathrm{C}^{\sharp} \llbracket \mathtt{V} := e \rrbracket \mathcal{X}^{\sharp}$ as $\mathrm{C}^{\sharp} \llbracket \mathtt{V} := \ell(e, \mathcal{X}^{\sharp}) \rrbracket \mathcal{X}^{\sharp}$
- (use $C^{\sharp}[V := [-Mf, Mf]] \mathcal{X}^{\sharp}$ if $\mathcal{O} \in E[[e]] \rho$)

Sound floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen al. 08]

• linear programming:

 $\begin{aligned} & simplex_{f}(\mathcal{X}^{\sharp}, \vec{\alpha}) \leq simplex(\mathcal{X}^{\sharp}, \vec{\alpha}) \\ & simplex(\mathcal{X}^{\sharp}, \vec{\alpha}) \stackrel{\text{def}}{=} \min \left\{ \sum_{k} \alpha_{k} \rho(\mathbb{V}_{k}) \mid \rho \in \gamma(\mathcal{X}^{\sharp}) \right\} \end{aligned}$

• Fourier-Motzkin elimination:

 $\begin{aligned} & \textit{Fourier}_{f}(\mathcal{X}^{\sharp}, \mathbb{V}_{k}) \xleftarrow{} \textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_{k}) \\ & \textit{Fourier}(\mathcal{X}^{\sharp}, \mathbb{V}_{k}) \stackrel{\text{def}}{=} \\ & \{ (\sum_{i} \alpha_{i} \mathbb{V}_{i} \geq \beta) \in \mathcal{X}^{\sharp} \mid \alpha_{k} = 0 \} \cup \\ & \{ (-\alpha_{k}^{-})c^{+} + \alpha_{k}^{+}c^{-} \mid c^{+} = (\sum_{i} \alpha_{i}^{+} \mathbb{V}_{i} \geq \beta^{+}) \in \mathcal{X}^{\sharp}, \ \alpha_{k}^{+} > 0, \\ & c^{-} = (\sum_{i} \alpha_{i}^{-} \mathbb{V}_{i} \geq \beta^{-}) \in \mathcal{X}^{\sharp}, \ \alpha_{k}^{-} < 0 \} \end{aligned}$

Sound floating-point linear programming

Guaranteed linear programming: [Neumaier Shcherbina 04] Goal: under-approximate $\mu = \min \{ \vec{c} \cdot \vec{x} \mid \mathbf{M} \times \vec{x} \le \vec{b} \}$ knowing that $\vec{x} \in [\vec{x}_l, \vec{x}_h]$ (bounding-box for $\gamma(\mathcal{X}^{\sharp})$).

• compute any approximation $\tilde{\mu}$ of the dual problem: $\tilde{\mu} \simeq \mu = \max \{ \vec{b} \cdot \vec{y} \mid {}^{t}\mathbf{M} \times \vec{y} = \vec{c}, \, \vec{y} \leq \vec{0} \}$ and the corresponding vector \vec{y}

(e.g. using an off-the-shelf solver; $\tilde{\mu}$ may over-approximate or under-approximate μ)

• compute with intervals safe bounds $[\vec{r}_l, \vec{r}_h]$ for $\mathbf{A} \times \vec{y} - \vec{c}$: $[\vec{r}_l, \vec{r}_h] = ({}^t \mathbf{A} \otimes^{\sharp} \vec{y}) \ominus^{\sharp} \vec{c}$

and then:

 $\nu = \inf((\vec{b} \otimes^{\sharp} \vec{y}) \ominus^{\sharp} ([\vec{r_l}, \vec{r_h}] \otimes^{\sharp} [\vec{x_l}, \vec{x_h}]))$

then: $\nu \leq \mu$.

Sound floating-point Fourier-Motzkin elimination

Given:

- $c^+ = (\sum_i \alpha_i^+ \mathbb{V}_i \ge \beta^+)$ with $\alpha_k^+ > 0$
- $c^- = (\sum_i \alpha_i^- \mathbf{V}_i \ge \beta^-)$ with $\alpha_k^- < 0$
- a bounding-box of $\gamma(\mathcal{X}^{\sharp})$: $[\vec{x}_l, \vec{x}_h]$

We wish to compute $\sum_{i \neq k} \alpha_i \mathbf{V}_i \geq \beta$ in \mathbb{F} implied by $(-\alpha_k^-)c^+ + \alpha_k^+c^-$ in $\gamma(\mathcal{X}^{\sharp})$.

• normalize c^+ and c^- using interval arithmetic:

$$\begin{cases} \mathsf{V}_{k} + \sum_{i \neq k} (\alpha_{i}^{+} \oslash^{\mu} \alpha_{k}^{+}) \mathsf{V}_{i} \geq \beta^{+} \oslash^{\mu} \alpha_{k}^{+} \\ -\mathsf{V}_{k} + \sum_{i \neq k} (\alpha_{i}^{-} \oslash^{\sharp} (-\alpha_{k}^{-})) \mathsf{V}_{i} \geq \beta^{-} \oslash^{\sharp} (-\alpha_{k}^{-}) \end{cases}$$

(interval affine forms)

• add them using interval arithmetic:

$$\sum_{i \neq k} [a_i, b_i] \mathbb{V}_i \geq [a_0, b_0]$$

where $[a_i, b_i] = (\alpha_i^+ \oslash^{\sharp} \alpha_k^+) \ominus^{\sharp} (\alpha_i^- \oslash^{\sharp} \alpha_k^-),$
 $[a_0, b_0] = (\beta^+ \oslash^{\sharp} \alpha_k^+) \ominus^{\sharp} (\beta^- \oslash^{\sharp} \alpha_k^-).$

Sound floating-point Fourier-Motzkin elimination (cont.)

• linearize the interval affine form $\sum_{i \neq k} [a_i, b_i] V_i \ge [a_0, b_0]$ into an affine form $\sum_{i \neq k} \alpha_i V_i \ge \beta$

we choose:

•
$$\alpha_i \in [a_i, b_i]$$

• $\beta = \sup ([a_0, b_0] \oplus^{\sharp} \bigoplus_{i \neq k}^{\sharp} (|\alpha_i \ominus^{\sharp} [a_i, b_i]|) \otimes^{\sharp} |[\vec{x}_i, \vec{x}_h]|)$

Soundness:

For all choices of
$$\alpha_i \in [a_i, b_i]$$
,
 $\sum_{i \neq k} \alpha_i \mathbb{V}_k \ge \beta$ holds in *Fourier*($\mathcal{X}^{\sharp}, \mathbb{V}_k$).
(e.g. $\alpha_i = (a_i \oplus_n b_i) \oslash 2$)

Consequences of rounding

Precision loss:

• Projection:

 $\gamma(\operatorname{Fourier}_{f}(\mathcal{X}^{\sharp}, \mathbb{V}_{k})) \supseteq \{ \rho[\mathbb{V}_{k} \mapsto v] \mid v \in \mathbb{Q}, \ \rho \in \gamma(\mathcal{X}^{\sharp}) \}$ $= C[[\mathbb{V}_{k} := [-\infty, +\infty]]] \gamma(\mathcal{X}^{\sharp})$

• Order:

$$\mathcal{X}^{\sharp} \subseteq^{\sharp} \mathcal{Y}^{\sharp} \Longrightarrow \gamma(\mathcal{X}^{\sharp}) \subseteq \gamma(\mathcal{Y}^{\sharp}) \quad (\not\equiv)$$

• Join:

$$\gamma(\mathcal{X}^{\sharp} \cup^{\sharp} \mathcal{Y}^{\sharp}) \supseteq ConvexHull(\gamma(\mathcal{X}^{\sharp}) \cup \gamma(\mathcal{Y}^{\sharp})) \quad (\neq)$$

Efficiency loss:

• cannot remove all redundant constraints

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

expression abstraction

float expression e_f \downarrow linearization affine form e_ℓ in \mathbb{Q} \downarrow float implementation

affine form e_ℓ in $\mathbb F$

environment abstraction

 $\mathcal{P}(\mathcal{V} \to \mathbb{F})$ $\downarrow \text{ abstract domain}$ polyhedra in \mathbb{Q} $\downarrow \text{ float implementation}$

polyhedra in \mathbb{F}

 $\downarrow \mathsf{widening}$

polyhedra in \mathbb{F}

Binary Representation Aware Domains

Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ((unsigned char) x + (unsigned char) y)

Handling integer casts

Compute-through-overflow

```
signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )
```

Concrete semantics:

- conversion signed char \rightarrow unsigned char \Rightarrow overflows, and maps $\{-1, 0, 1\}$ to $\{0, 1, 255\}$
- integer promotion: unsigned char \rightarrow int \implies value preserving
- addition in int: $\implies \{0, 1, 2, 255, 256, 510\}$
- conversion int \rightarrow signed char \implies overflows, and returns $\{-2, -1, 0, 1, 2\}$
Handling integer casts

Compute-through-overflow

```
signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )
```

Interval semantics:

 \bullet conversion signed char \rightarrow unsigned char

 \implies overflows, and maps [-1,1] to [0,255]

 \Longrightarrow all precision is lost

• the final result is
$$[-128, 127]$$

Issue:

the actual result [-2, 2] is representable in the interval domain but the intermediate results are not! (not convex)

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ((unsigned char) x + (unsigned char) y)

Modular interval domain:

invariants $[\ell, h] + k\mathbb{Z}, k \in \mathbb{N}$ (no hypothesis on bit-sizes of types)

- conversion signed char \rightarrow unsigned char \implies overflows, and maps [-1, 1] to $[-1, 1] + 256\mathbb{Z}$
- integer promotion: unsigned char \rightarrow int \implies value preserving
- addition in int: $\implies [-2,2] + 256\mathbb{Z}$
- conversion int \rightarrow signed char \implies overflows, and returns [-2,2]

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ((unsigned char) x + (unsigned char) y)

Modular interval domain:

no Galois connection (no best abstraction)

- $[\ell, h] + 0\mathbb{Z}$ handed exactly as classic intervals
- +[#], -[#], ×[#], ∪[#] handed precisely
 e.g., ([ℓ, h] + kZ) +[#] ([ℓ', h'] + k'Z) = [ℓ + ℓ', h + h'] + gcd(k, k')Z
- wrap-around: wrap^{\sharp}([ℓ , h] + $k\mathbb{Z}$, [a, b]) =
 - [wrap(ℓ, [a, b]), wrap(h, [a, b])] + 0ℤ
 if [ℓ, h] + kℤ does not cross a + (b − a)ℤ
 - $[\ell, h] + \gcd(k, b a + 1)\mathbb{Z}$ otherwise
- otherwise use interval information

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation

(reduced product)

Antoine Miné

p. 58 / 74

Handling implicit integer casts

Code example

```
signed char x, y, z;
unsigned register r1, r2, r3;
r1 = x; r2 = y;
r3 = r1 + r2;
z = r3;
```

Handling implicit integer casts

```
Code example

signed char x, y, z;

unsigned register r1, r2, r3;

r1 = (unsigned) x; r2 = (unsigned) y;

r3 = r1 + r2;

z = (signed char) r3;
```

Use a pool of register variables to perform all computations type mismatch \implies overflows and imprecision

- more difficult to detect by syntactic filters (implicit casts, computations spread on several instructions)
- can also be handled by modular integers
- also a common pattern in embedded software (manual register allocation, helps binary traceability)

Low-Level Memory Abstraction

Low-level memory access examples

Unio<u>n</u>

```
union {
   struct { uint8 al,ah,bl,bh } b;
   struct { uint16 ax,bx } w;
} r;
r.w.ax = 258;
if (r.b.al==2) r.b.al++;
```

Type-punning

```
uint8 buf[4] = { 1,2,3,4 };
uint32 i = *((uint32*)buf);
```

Fast copy

float	a,b;		
((int	;)&a)	=	*((i

<u>C standard:</u> ill-typed programs, undefined behavior

In practice:

- there is no error
- the semantics is well-defined

```
(ABI specification)
```

Low-level memory semantics

Concrete semantics: defined at the bit level

Abstract semantics:

decompose dynamically the memory into cells of scalar type:

- $\bullet~\mbox{cell}=\mbox{variable},~\mbox{offset},~\mbox{and}~\mbox{scalar}~\mbox{type}$
- materialize new cells when needed by a dereference (possible reduction with existing cells)
- allow overlapping cells, with an intersection semantics

Orthogonality:

- \bullet memory domain: maps variables ${\mathcal V}$ to cells ${\mathcal C}$
- scalar domains: collections of independent cells $\mathcal{C} \to \texttt{Val}$

Pointers:

- concrete: semi-symbolic values: base $\in \mathcal{V}$ and offset $\in \mathbb{Z}$
- abstraction: Cartesian abstraction $\mathcal{P}(\mathcal{V}) \times \mathcal{P}(\mathbb{Z})$
 - keep $\mathcal{P}(\mathcal{V})$ in a pointer-specific domain
 - treat offsets as integer variables in numeric domains

Low-Level Memory Abstraction

0

1

Low-level memory example

Union

```
r.w.ax = 258;
if (r.b.al==2) r.b.al++;
```

initial state: no cell (\top)

2

Low-Level Memory Abstraction

Low-level memory example

create r.w.ax, a uint16 cell at offset 0

Low-Level Memory Abstraction

Low-level memory example

create r.b.al, a uint8 cell at offset 0 initialized with: r.w.ax mod 256

Low-Level Memory Abstraction

Low-level memory example

modify cell r.b.al
destroy invalidated cell r.w.ax

Floating-Point Domains

Floating-Point Domains

Bit-level float manipulations

Cast

```
double cast(int i) {
    union { int i[2]; double d; } x, y;
    x.i[0] = 0x43300000; y.i[0] = x.i[0];
    x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];
    return y.d - x.d;
}
```

Floating-Point Domains

Bit-level float manipulations

Cast double cast(int i) { union { int i[2]; double d; } x, y; x.i[0] = 0x43300000; y.i[0] = x.i[0]; x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1]; return y.d - x.d; }

- 0x43300000 0x80000000 represents $2^{52} + 2^{31}$
- 0x43300000 0x80000000 ^i represents $2^{52} + 2^{31} + i$
- y.d x.d equals i
 ⇒ cast from 32-bit signed int to 64-bit double

Justification:

- some CPUs miss the cast instruction
- do not rely on the compiler to emulate it

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation

(PowerPC)

(code traceability) Antoine Miné p. 65 / 74

Floating-Point Domains

Bit-level float manipulations

Cast double cast(int i) { union { int i[2]; double d; } x, y; x.i[0] = 0x43300000; y.i[0] = x.i[0]; x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1]; return y.d - x.d; }

Analysis principle:

- memory domain: detects union usage smart initialization at materialization y.d = dbl_of_word(y.i[0], y.i[1])
- new ad-hoc symbolic domain: maintains predicates
 - V = W^0x8000000
 - V = *dbl_of_word*(0x43300000, W)

(v.d)

 $(y.i[1] = i^x.i[1])$

Floating-Point Domains

Bit-level float manipulations

```
Cast
double cast(int i) {
    union { int i[2]; double d; } x, y;
    x.i[0] = 0x43300000; y.i[0] = x.i[0];
    x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];
    return y.d - x.d;
}
```

reduction between intervals and predicates:

- predicates inferred by pattern-matching of expressions and values provided by intervals (0×43300000, 0×80000000)
- symbolic rewrite rules enrich intervals

 $(y.d-x.d \rightsquigarrow (double)i)$

easy to extent with new predicates and propagation rules!

More bit-level float manipulations

Extraction with a bit-mask

double d; unsigned* p = (unsigned*) &d; e = ((*p >> 20) & 0x7ff) - 1023; Extraction with loop double d, x = 1; int e = 0; if (d > 1) while (x < d) { e++; x *= 2; }

Both examples extract the exponent of a (normalized) 64-bit float.

Can be handled by:

• enriching the symbolic domain

•
$$V = hi_word(W)$$

•
$$V = 2^{W+i}, i \in \mathbb{Z}$$

- adding new numeric domains
 - $V/W \in [\ell, h]$ (similar to difference-bound matrices)

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués (static analyzer for real-time embedded software)

- developed at ENS (since 2001)
 B. Blanchet, P. Cousot, R. Cousot, J. Feret,
 L. Mauborgne, D. Monniaux, A. Miné, X. Rival
- industrialized and made commercially available by AbsInt (since 2009)

[Blanchet et al. 03]

RAIM 2013 - 19 November 2013

Static analysis by abstract interpretation

Antoine Miné

The Astrée static analyzer

Specialized static analyzers

Design by refinement:

- focus on a specific family of programs and properties
- start with a fast and coarse analyzer (intervals)
- while the precision is insufficient (too many false alarms)
 - add new abstract domains
 - refine existing domains
 - improve communication between domains
- \implies analyzer specialized for a (infinite) class of programs
 - efficient and precise
 - parametric (by end-users, to analyze new programs in the family)
 - extensible (by developers, to analyze related families)

(reductions)

(generic or application-specific)

(better transfer functions)

Astrée specialization

Specialized:

- for the analysis of run-time errors (arithmetic overflows, array overflows, divisions by 0, etc.)
- on embedded critical C software (no dynamic memory allocation, no recursivity)
- in particular on control / command software (reactive programs, intensive floating-point computations)
- intended for validation

(analysis does not miss any error and tries to minimise false alarms)

More Abstract Domain Examples

A few of the abstract domains used in Astrée.

Astrée applications (at ENS)

Airbus A340-300 (2003)

Airbus A380 (2004)

(model of) ESA ATV (2008)

- size: from 70 000 to 860 000 lines of C
- analysis time: from 45mn to \simeq 40h
- alarm(s): 0 (proof of absence of run-time error)

Static analysis by abstract interpretation

The end