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~ ntroduction
Motivation: a classic example

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
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Introduction

Motivation: a classic example

40s after launch. ..

(cause: overflow during an arithmetic conversion)
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Introduction

Lessons

@ software errors can be costly even simple ones
(Ariane 5 failure estimated at more than 370,000,000 US$)

@ hardware redundancy does not help

(redundant computers run the same software, the same error)

@ testing is not sufficient

(hardly exhaustive)

@ programming in high-level “safe” languages is not sufficient

(Ariane 5 coded in Ada, with arithmetic exceptions enabled)
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Introduction

Lessons

@ software errors can be costly even simple ones
(Ariane 5 failure estimated at more than 370,000,000 US$)

@ hardware redundancy does not help

(redundant computers run the same software, the same error)

@ testing is not sufficient

(hardly exhaustive)

@ programming in high-level “safe” languages is not sufficient

(Ariane 5 coded in Ada, with arithmetic exceptions enabled)

= use formal methods
(provide rigorous, mathematical insurance about program behaviors)
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Introduction

Static analysis

Infers properties of the dynamic behavior of programs.

@ analyzes the source code (not a model)
@ soundness: no behavior is missed (full control and data coverage)
@ automatic, always terminates

@ incomplete due to over-approximations (false alarms)

v

Applications:
@ check simple properties, with low precision requirements
(optimization in compilers)
@ can be used to uncover bugs
(Ariane 5 bug detected by Polyspace Analyzer, late 1990s)

@ can it be used for validation
(0 false alarm goal; e.g, Astrée specialized analyzer, early 2000s)
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Introduction

Example analysis: inferring numeric invariants

Insertion Sort

for i=1 to 99 do
p := T[il; j := i+1;
while j <= 100 and T[j] < p do
T[j-11 := T[j]l; j := j+1;
end;

TL[j-1]1 := p;
end;
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Introduction

Example analysis: inferring numeric invariants

Interval analysis:

Insertion Sort

for i=1 to 99 do
ie[1,99]
p := T[il; j := i+1;
i€ [1,99], j € [2,100]
while j <= 100 and T[j] < p do
i€[1,99], j € [2,100]
T[j-11 := T[j1; j := j+1;
ie[1,99], j€[3,101]

end;
i€ [1,99], j €[2,101]
T[j-1] := p;

end;

= there is no out of bound array access
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Introduction

Example analysis: inferring numeric invariants

Linear inequality analysis:

Insertion Sort

for i=1 to 99 do

ie[1,99]

p := T[il; j := i+1;

ie[l,99], j=i+1

while j <= 100 and T[j] < p do
ie[1,99], i+1< 3 <100
T[j-11 := T[j1; j := j+1;
ie[l,99],i+2<j<101

end;
ie[l1,99,i+1<j<101
T[j-1] := p;

end;
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Introduction

Abstract interpretation

Abstract interpretation: unifying theory of program semantics

[Cousot Cousot 76]

Core principles:

@ semantics are linked through abstractions (o, )
@ abstractions can be composed and reused (abstract domain)
@ semantics are expressed as fixpoints (Ifp F)
o fixpoints can be approximated by iteration with acceleration
(widening V)
Applications:
@ compare existing semantics and analyses (unifying power)

@ derive new semantics by abstraction
derive computable semantics = sound static analysis
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Introduction

Abstract domain examples

concrete D : {(0,3),(5.5,0),(12,7),...} (not computable)
boxes Di : X €[0;12] A Y € [0; 8] (linear cost)
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Introduction

Abstract domain examples

concrete D : {(0,3),(5.5,0),(12,7),...} (not computable)
boxes D : X €[0;12] A Y € [0;8] (linear cost)
polyhedra D5 : 6X +11Y >33 A--- (exponential cost)
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Introduction

Abstract domain examples

concrete D : {(0,3),(5.5,0),(12,7),...} (not computable)
boxes D : X €[0;12] A Y € [0;8] (linear cost)
polyhedra D5 : 6X +11Y >33 A--- (exponential cost)

= trade-off cost vs. precision and expressiveness.
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Correctness
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Correctness proofs a

Goal: prove that the program never enters an error state

The program is correct (blue Nred = ()
The polyhedra domain can prove the correctness (cyan Nred = ()
The intervals domain cannot (green Nred # (), false alarm)
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Correctness proofs an

Goal: prove that the program never enters an error state

The program is correct (blue Nred = ()
The polyhedra domain can prove the correctness (cyan Nred = ()
The intervals domain cannot (green Nred # (), false alarm)

Trade-off between cost and precision (number of false alarms)
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Introduction

Overview

Rational domains
e concrete & abstract semantics of a toy language
e interval domain
e polyhedra domain

Floating-point domains

e linearization of float expressions
o float polyhedra

Binary representation aware domains
e machine integers
e memory abstraction
e binary float domains

Application: Astrée analyzer
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Rational Domains

Rational Domains
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Rational Domains

Toy language: syntax

arithmetic expressions:

exp = v variable V€ V
| —exp negation
| expoexp binary operation: o € {+,—, x,/}
| [c, ] constant range, ¢,c’ € QU { +o0 }
(c is a shorthand for [c, c])

programs:

prog = V := exp assignment
] if expr< 0 then prog else prog fi test
| while exp<10 do prog done loop
| prog; prog sequence

Finite set V of variables, with value in Q
(later extended to floats F and machine integers M)
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Rational Domains

Concrete semantics

Semantics of expressions: Ef[e]: (V — Q) — P(Q)

The evaluation of e in p gives a set of values:

E[fe.cllp = {xeQlc<x<(c}

E[V]p = {p(n)}

Bl-elp = {-v|veE[e]p}

Ela+elp € {v+w|vucElea]pwvecEle]p}

Ela-elp < {u-w|uecElalpvcEle]p}
E[laxe]p € {wvuxw|vucE[ea]pwvcElea]p}
Ele /e]p {vi/velvieE[e]pveE[e]p vo#0}
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Rational Domains

Concrete semantics

Semantics of programs: C[p]: D — D
where D = P(V — Q)

A transfer function for p defines a relation on environments p € D:

C[v:=e]X < {p[Vev]|lpeX, veE[e]p}
Clex0]Xx = {plpeX,IveE[e]p, vix0}
Clbib2]X = C[b](C[b1] X)
C[if e10 then b; else b ] X =
(C[b1] oC[ex0])X U(C[b2] cCJerk0])X
C[while e<10do b done] X &
Cleda 0] (IfpAY.X U (C[b] oC[e<0])Y)
It relates the environments after the execution of a command
to the environments before.
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Rational Domains

Abstract domains

@ Abstract elements:

o D! set of computer-representable elements
e 7 : D¥ — D concretization
o C! approximation order: X* C# Y — ~(X*) C 4()¥)

@ Abstract operators:

o C*[c] : D* — D and U* : (D x DY) — DF

o soundness: (C[c] ov)(X¥) C (yo CHc])(XH)

AP Uy (VF) C (XF UF )

e Fixpoint extrapolation

o V: (D! x D*) — DF widening

o soundness:  y(X*%) U y()F) C y(X* v VF)

e termination:  V sequence (y?),-eN

the sequence Xg = yg, Xiﬁﬂ = Xiﬁ v y?+1

stabilizes in finite time: 3n < w, X,EH =X}

Both semantics and algorithmic aspects.
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Rational Domains

Galois connection

Galois connection definition: (D, C) = (D*, CF)

@ monotonic concretization ~y : Df — D
@ monotonic abstraction o : D — DF
o VX € D:VY* € DF: (X)) CF VP = X C()F)

Application:  optimal abstractions

o elements X’ € D have a best abstraction: a(X)
a(X) = F{P*| X (%))

@ functions F : D — D have a best abstraction:
Ft = aoFoxy

@ however optimality does not compose

ao(FioFR)oyC(aoFoy)o(aoFoy) (yoa2id)

@ provides semantic aspects only, no algorithm!

RAIM 2013 - 19 November 2013 Static analysis by abstract interpretation Antoine Miné

p. 15 / 74



Rational Domains

Abstract semantics

Given by the abstract domain:
e sound CF[V :=e], Cf[e0], Ut

@ sound and terminating v

Derived analysis:  from the concrete. ..

Clby; b ] X & C[b](C[b1] X)
C[if e 0 then by else by ] X =
(Clb1] oCle0] )X U (C[b2] cC[erq0])X
C[while e<10do bdone] X &
Cles 0] (IfpAV.X U (C[b] oC[ex0])Y)
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Rational Domains

Abstract semantics

Given by the abstract domain:
o sound CF[V :=e], Cf[e 0], Ut

@ sound and terminating v

Derived analysis: ...to the abstract

CHl b by ] X% = CH[ b [ (C*[ b ] XF)
CH[if e < 0 then by else by | X! =
(CFH[by] o CHlex 0] ) X% P (CH[ by ] o CH[e 4 0] )X

C![while e 10 do bdone] Xt &
CHle sk O] (limAVEYE v (X% U (CF[b] o CH e 0])DF))

The derived analysis is sound and terminates.
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Rational Domains Intervals domain

Intervals domain
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Rational Domains Intervals domain

Intervals lattice

B' < {[a,b]lacQU{ -0}, be QU{+c0},a< b}
[Cousot 76]

Galois connection: P(Q) <z_—z> Bfu{1%}
Wab)) = {xeQla<x<b}

vy ik if X =0
@ N [min X, max X] otherwise

(v is not always defined, but cvo F o 7y is generally defined)

Partial order:

[a,b] Cfc,d] <% a>candb<d
T = ] — 00, +00]

[a,b] Ut [c,d] = [min(a,c), max(b,d)]

§ def [max(a, c), min(b, d)] if max < min
[a, 6] O [c d] { 1f otherwise
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Rational Domains Intervals domain

Derived abstract domain

Pointwise lifting to an abstraction of P(V — Q):

D! E (Vs BYu{ Lt}
T E AT

XECEYE S xt = L Ey (X V£ LAY XAV CF YY)

Vi if Xt =1t
Xttt €y if Yt = |

AV.XH(V) UF YE(V)  otherwise

14 if X¢ = 1For Yf=1F
Xttt = e if IV XH(V) N PE(Y) = LF

AV.XH(V) NF VE(V)  otherwise
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Rational Domains Intervals domain

Interval abstract arithmetic operators

Based on interval arithmetic [Moore 66]

[c, c'}F = el
—+ [37 b] d:ef [_bv _a]
[a,b] +! [c,d] & [a+c,b+d]

[37 b] b [Ca d] = [a —d,b— C]
[a,b] x! [c,d] = [min(ac, ad, bc, bd), max(ac, ad, be, bd)]
[a.b] /*[c,d] =

where £00 x 0 = 0.
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Rational Domains Intervals domain

Interval abstract assignment

Abstract evaluation of expressions: Ef[e] : D! — B

Ef[e] L def
if XF £ LF:
Elf[c,c]]xt &
Ef[v] At def
Ef[ —e] A* =

Effe; 0 ] A
Abstract assignment:
ik

CHV :=e] xt & {
where VF = Ef[e] XF.

Note: C*[ V := e] may not be optimal, even though each o is.

iR

[c. )

XH(V)

_tE[e] Xt

Effe; ] XF of Effer ] X*

if Vi = 11

X[V~ V'] otherwise
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Rational Domains

Interval abstract tests

Intervals domain

If X%(X) = [a, b] and X*(Y) = [c, d], we can define:

\ # ifa>c
fx —c<o]at &« * |
Ci[x—c<O0]X {Xﬁ[XH[aﬂ'ﬂin(b,C)]] otherwise
ik ifa>d

Cilx—y<o]xt « X X — [a, min(b, d)],
Y — [max(c, a), d] ]

otherwise

General case: constraint programming (HC4)

Note: fall-back operators
o Cilex 0] X% = X is always sound
o CH[X:=e] X% = XX > T#] is always sound
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Rational Domains Intervals domain

Interval widening

Widening on non-relational domains:

Given a value widening V: B x Bf — B!,
we extend it point-wisely into a widening V: D! x D! — DF;

XEv Y VLXE(V) v VE(V)

Interval widening example:

1t v Xt & Xt

der 3 ifa<c b if b>d
[a,6] v [c,d] = [{ —o00 otherwise ’{+oo otherwise

Unstable bounds are set to 00 )
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X:=0;

while e X<40 do
X:=X+3

done




Rational Domains Intervals domain

Analysis with widening example

X:=0;

while e X<40 do
X:=X+3

done

We must compute:

CH[X > 40 (lim AVEVEY (XFUFCE[X = X+3] (CH[X < 40] V%))
o Vi=uxt=0,0]
o Vi =5V (X*UF (V5 +4[3.3])) = [0,0] v ([0,0] U [3,3]) = [0, +oc]
° Vi =Yiv (X4 (V] 45 [3,3])) = [0, +0c] v ([0, 0] UF [3,42]) = V)
o CI[X>40] (Vi) = [42,+o0]

Decreasing iterations: to improve the precision

@ after stabilization, continue iterating without Vv (use N)
@ in our case, y§ = [0,42], so C*[X > 40] (:)ig) = [40,42]
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Rational Domains Polyhedra Domain

Polyhedra Domain
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Rational Domains Polyhedra Domain

The need for relational domains

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while e true do

i) btoe | X e
SiThi Tk RiTETS S last output
if R<=-D then Y:=S-D fi;
if R>=D then Y:=S+D fi R:  delta Y-S
D:  max. allowed for |R|

done
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Rational Domains Polyhedra Domain

The need for relational domains

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while e true do X:  input signal
X:=[-128,128]; D:=[0,16]; | | oupt " fi "
Besits Tests Wemll: s: Iastpout ft
if R<=-D then Y:=S-D fi; ' s
. . R: delta Y-S
if R>=D then Y:=S+D fi

D:  max. allowed for |R|
done
Iterations in the interval domain (without widening):
X0 Ooxr | xR | \ Xk
Y=0 | [Y[<144 | [¥][ <160 | | [Y] <128 +16n

In fact, Y € [—128,128] always holds.

To prove that, e.g. Y > —128, we must be able to:
@ represent the properties R =X — S and R < —D
@ combine them to deduce S— X > D, and then Y =S8 —D > X
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Rational Domains Polyhedra Domain

Polyhedra domain

Domain proposed by [Cousot Halbwachs 78]
to infer conjunctions of affine inequalities A\; (3°7_; a;V; > 5)).

Abstract elements:

o LinCons < affine constraints over V with coefficients in Q
o D! L Pyiie(LinCons)

Concretization:

WX = {peV-Qvee Xt plc}

o (X" is a closed convex polyhedron of (V — Q) ~ QY|
o v(X*) may be empty, bounded, or unbounded

@ 7 is not injective
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Rational Domains Polyhedra Domain

Polyhedra representations

@ No memory bound on the representations (even minimal ones)
@ No best abstraction «

@ Dual representation using generators
(double description method)
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Rational Domains Polyhedra Domain

Polyhedra algorithms

Fourier-Motzkin elimination:

Fourier(X*, V) eliminates V) from all the constraints in X*:
Fourier(X!,v,) &
[(X Vi > B) € X% [ ax =0} U
{(—ap)et +afc | ¢f = (T;afv; > %) € X%, af >0,
¢ = (T Vi2 7)€ X ap <0}

v(Fourier(X*, V) = { p[Vk — v] | v €Q, p € y(XH) }

i.e., forget the value of V
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Rational Domains Polyhedra Domain

Polyhedra algorithms

Linear programming:

def

simplex(%,@) % min { Y, aip(Vi) | p € 4(A%) }
Application:  remove redundant constraints:

for each ¢ = (3, a;V; > B) € X*
if B < simplex(X*\ {c},d), then remove ¢ from X*

(e.g., Fourier causes a quadratic growth in constraint number,
most of which are redundant)

Note: calling simplex many times can be costly
@ use fast syntactic checks first
@ check against the bounding-box first

@ use simplex as a last resort
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Rational Domains Polyhedra Domain

Polyhedra abstract operators

Order: Cf
Xt chopt L V(> aiVi > B) € Vi simplex(X*%, &) > B
£ (X% C (0%

def

Xt=tyt £ oyt cf yiapt Cf oyt
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Rational Domains Polyhedra Domain

Polyhedra abstract operators (cont.)

Convex hull:

@ Express a point V€ X% Uf ) as a convex combination:
V=oX+oYforXe X!, Ye)l o+0'=1,0,0/ >0

@ as oX + ¢'Y is quadratic
we consider instead: V =X + Y with X/o € X%, Y/o' € )"
e, X€oXt ¥eo )
(adds closure points on unbounded polyhedra)

Formally:

Xt Ut oyt &f

Fourier( { (3_; ajXj — Bo > 0) | (3_; oyV; > B) € XY U
{ (0= B0’ 20) | (X;0V; 2 B) €V} U
{Vi=X+Y|V,eV}IU{oc>0,0>0,0+0 =1},
(%, [Viev}u{od})

[Benoi et al. 96]
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Rational Domains Polyhedra Domain

Polyhedra abstract operators (cont.)

Precise abstract commands:

(exact)

CE[Y Vi + B < 0] X% = AP U{(X; Vi + B < 0)}

CH[V; :== [~o0, +00] ] X o Fourier(X*,V;))
CHV; =S oV + B Xt =
subst(V + V;, Fourier((X* U {V =", a;V; + 8}), V;))

Fallback abstract commands:

(coarse but sound)
Ctle<0]ax* & Xt

CHV; = e] Xt = Fourier(X*,V})
alternate solution:

apply interval abstract commands to the bounding box
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Rational Domains Polyhedra Domain

Polyhedra widening

Classic widening V in D?

XEoytE {cext | Vici{c} U
{ceYt| 3 e xt, Xt =F X\ )u{c}}

@ suppress unstable constraints ¢ € X%, Y* ¢* {c}

@ add back constraints ¢ € J! equivalent to those in X*
i.e., when 3¢’ € xf Xt =F (X%\ )uU{c}.

(X* and V* must have no redundant constraint)

Example:
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Floating-point domains

Floating-point domains
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Floating-point domains

Floating-point uses

Two independent problems:

o Implement the analyzer using floating-point
goal: trade precision for efficiency

exact rational arithmetic can be costly
coefficients can grow large (polyhedra)

o Analyze floating-point programs

goal: catch run-time errors caused by rounding
(overflow, division by 0, ...)

Also: a floating-point analyzer for floating-point programs.

Challenge: how to stay sound?
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Floating-point domains

Floating-point computations

The set of floating-point numbers is not closed under 4, —, x, /:
every result is rounded to a representable float,

an overflow or division by 0 generates +00 or —oo (overflow);
small numbers are truncated to 40 or —0 (underflow);

some operations are invalid (0/0, (+00) + (—o0), etc.)
and return NalV.

Observable semantics:

@ overflows and Nals halt the program with an error O,
@ rounding and underflow are not errors,

@ we do not distinguish between +0 and —0.

= variable values live in a finite subset ' of Q,
expression values live in F U {O}.
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Floating-point domains

Floating-point expressions

Floating-point expressions exp,

exps = [c, ] constant range c,c’ € F, ¢ < ¢’
| v variable V € V
| © exps negation

exps O, expy operator ©® € {D,0,®,0}

(we use circled operators to distinguish them from operators in Q)
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Floating-point domains

Concrete semantics of expressions

Semantics of rounding: R.: Q - FU{O}.

Example definition:

e i > H <
R+oo(x>d—f{m'”“eF’Y—x} fx < MF

(@] if x > Mf
ai [ max{yeF|y<x} ifx>-Mf
Rooolx) = { o if x < —Mf
Notes:

° Vx,r, Rooo(x) < Re(x) < Rioo(x)

@ Vr, R, is monotonic
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Floating-point domains

Concrete semantics of expressions (cont.)

Efer] : (V—F) - P(FU{O}) (expression semantics)
E[v]p def{ p(V) }

E[[c.c]]p E{xeF|lc<x<c'}
E[oe]p = {-x|xeE[e]pnF}U({O}NE[e]p)
Eler 0 ef]p <

{R(x-y)|x€E[ef]pNF, ycE[e;]pNF }U

{0] O eE[e]pUR]p)

{O] if0eE[e]pand =0}

Clc] : P(YV—=F)—P(V—->F)u{O}) (command semantics)

Clx =e]X € {p[X>v]|peX, veE[e]pNF}
U{O}NE[er] X)

={plpeX IveE[e]pnF, v<0}
({0} E e ] %)

C[[ef SO]]X
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Floating-point domains

Floating-point interval domain

Representation: 15* = {[a,b]|acF, beF, a<hb}
Expression semantics: Ef[exp,] : (V — B*) — (B*U{0})

[a, ] @*[d, 6] = [Roco(a+ &), Rico(b+ b)]

[a,6] ©° [, 6] = [Roso(a— 1), Ryc(b — )]

[a,b] @[, 6] £ [ R_oo(min(ad',ab’, ba, bb'),
Rioo(max(ad’, ab’, ba', bb')]

@ We suppose r is unknown and assume a worst case rounding.

@ Soundness stems from the monotonicity of R_,, and Ry.

@ Abstract operators also use float arithmetic (efficiency).

Error management

If some bound in Ef[ exp,] evaluates to O, we
@ report the error to the user, and

@ continue the evaluation with TF.
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Expression linearization
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Floating-point domains Expression linearization

Floating-point issues in relational domains

Relational domains assume many powerful properties on Q:
associativity, distributivity,. . . that are not true on F!
Example: Fourier-Motzkin elimination
X—Y<c AN Y-Z<d = X—Z<c+d
Xe,Y<c AN Y6,2<d #*= X6,Z2<c®h,d
X=1,Y=10%®2z2=-1,c=Xx0,Y = —10%,
d=Y6,2=10%c®,d=0,X0,Z=2>0)
We cannot manipulate float expressions as easily as rational ones!

Solution:

keep representing and manipulating rational expressions

@ abstract float expressions from programs into rational ones
o feed them to a rational abstract domain

o (optional) implement the rational domain using floats
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Floating-point domains Expression linearization

Affine interval forms

We put expressions in affine interval form: [Miné 04]
exp, = [ao, bo| + >4 [ak, bi] X Vi
Semantics:

Ele]p = { o+, ck x p(Vi) | Vi, ¢ € [a;, bj] }
(evaluated in Q)

Advantages:

@ affine expressions are easy to manipulate

@ interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction

@ intervals can easily model rounding errors

@ easy to design algorithms for C¥[X :=¢;] and C*[e, < 0]
in most domains
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Floating-point domains Expression linearization

Affine interval form algebra

Operations on affine interval forms:

@ adding H and subtracting & two forms
e multiplying X and dividing 1 a form by an interval

Using interval arithmetic @f, of, ®f, o
(o4 ik X Vi) B (i + it x Vi) & (i @ i§) + S (i & i) x Vi

P o+, ik x Vi) & (7 @f i)+, (7 @ i) x Vi

Projection: 7 : Df — exp,
We suppose we are given an abstract interval projection operator

T, such that:
T4(X%) = [a, b] such that [a, 5] 2 { p(Vk) | p € 1(XF) }.
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Floating-point domains Expression linearization

Linearization of rational expressions

Intervalization: ¢ : (exp, x D*) — exp,

Intervalization flattens the expression into a single interval:
. . def . .
io + X, ik X Vi, %) £ iy @f 8 (i @ mi(X1)).

Linearization without rounding errors: 7 : (exp x DF) — exp,

Defined by induction on the syntax of expressions:

def

o (VA% = [1,1] xV
U([a, b], X%) &' [a, b]

(
(
0 ((er+ep, X)L ey, XY) B (e, XF)
(
(

o/ el—ez,Xu) d:ef f(el,/'\fﬁ) Eé(ez,Xﬂ)

Uey /e, X1) L 0oy, XF) 2 L(U( e, XF), XF)

def either  1(f(er, XF), XF) X £(ep, &)
o /(e;xer, XF) = can be { or (e, X1). X1) 5 £ ey, XF)
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Floating-point domains Expression linearization

Linearization of floating-point expressions

Rounding an affine interval form: (32-bit single precision)

@ if the result is normalized: we have a relative error ¢
with magnitude 2723:
def

E([a()a bO] + Zk[ak? bk] X V/() =
max(|aol. | bol) x 272,272
Zk(maxuak‘v ‘bk‘) X [*272372723] X Vk)

@ if the result is denormalized, we have an absolute error
L [——159 9-159]

= we sum these two sources of rounding errors
Linearization with rounding errors:  /: (exp; x D*) — exp,

Ue1 B, €2, XF)
O(er, X*) B £(e2, X*) B e(l(er, X*)) B e(l(e2, X*)) B w

def

(&1 @, e, XH)
t(b(er, X%), X%) K (U(e2, X*) B e(l(e2, X%))) B w
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Floating-point domains Expression linearization

Applications of the floating-point linearization

Soundness of the linearization

Ve, VX! € DI, Vp € y(X¥),
if O ¢ E[e] p, then E[e] p C E[/4(e, X ] p

Application: CH[V:=e] X*

o check that O ¢ E[e] p for p € y(X*) with interval arithmetic
o compute CH[V :=e] X as CH[V :=((e, X*)] X*
o (use CH[V :=[—Mf, Mf]] X* if O € E[e] p)

RAIM 2013 - 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 48 / 74



Floating-point domains Sound floating-point polyhedra

Sound floating-point polyhedra
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Floating-point domains Sound floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen al. 08]

@ linear programming:

simplex (X%, @) < simplex(X*, @)
def

simplex(X*,d) = min { 32, axp(Vi) | p € y(X*) }

@ Fourier-Motzkin elimination:
Fourier¢(X*,V)) <= Fourier(X*,Vy)

Fourier(X!,v,) &

{(XCjaiVi>B)e X |ar=0}U

{(—ap)ct +afc | ¢t =(3,afvi > pt) e XF of >0,
c=avi>p)eXt o <0}
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Floating-point domains Sound floating-point polyhedra

Sound floating-point linear programming

Guaranteed linear programming:  [Neumaier Shcherbina 04]

Goal: under-approximate g =min { &- X | M x X < b }
knowing that X € [, X,] (bounding-box for y(X*)).
@ compute any approximation /i of the dual problem:
fimp=max{b-7|Mxy=¢y<0}
and the corresponding vector y
(e.g. using an off-the-shelf solver; [i may over-approximate or
under-approximate )
@ compute with intervals safe bounds |7}, 7] for A x y — C:
[7i, 7] = ("AeFy) ot €
and then:
v =inf((b@* y) &F ([7, ] ©F [%, X4]))
then: v < p.

RAIM 2013 - 19 November 2013 Static analysis by abstract interpretation Antoine Miné

p. 51/ 74



Floating-point domains Sound floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination

Given:
o cm = (X of Vi > BT) with af >0
o c  =(>;0;Vi>p7)witha, <0
o a bounding-box of v(X#): [%), X4]
We wish to compute Z,-#k aiV; > BinF
implied by (—a)ct +ajfc¢™ in y(&%).

@ normalize ¢t and ¢~ using interval arithmetic:
{ Vk + Zi#k (Ol;i» @ﬁ Oét)v, Z ﬁ+ @ﬁ at
Vi + 2 (o OF (e ))Vi > 57 OF (—ay)

(interval affine forms)

@ add them using interval arithmetic:
> izk (@i bilVi > [ao, bo]
where [a;, bi] = (af @% o) &F (o @F af),
[a0, bo] = (BT @F o) ©F (B~ @ ay).
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Floating-point domains Sound floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination (cont.)

o linearize the interval affine form >, [aj, bj]V; > [ao, bo]
into an affine form E,#k aiV; > B8

we choose:
e o € [a,-, b,']
o B =sup ([20, bo] &* B, (| & [ay, bi]|) @F |[%, %4]])

Soundness:

For all choices of «; € [aj, bi],
>izk @iVk > 3 holds in Fourier(X*, V).

(e.g. o = (a,- ®n b,') (@) 2)
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Floating-point domains Sound floating-point polyhedra

Consequences of rounding

Precision loss:

@ Projection:
y(Fouriers (X%, V) 2 {p[Vkrv]|veEQ, pecy(XH)}
C[Vk := [~o0, +00] | ¥(XF)

@ Order:
XECEYE— (X)) (V") (#)
e Join:
A UF V%) O ConvexHull(y(XF) UA (D)) (#)

Efficiency loss:

@ cannot remove all redundant constraints
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Floating-point domains Sound floating-point polyhedra

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

expression abstraction environment abstraction

float expression ef

| linearization PV —T)
affine form e in Q J abstract domain
J float implementation polyhedra in Q
affine form ey in F — J float implementation

polyhedra in F
J widening
polyhedra in F
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Binary Representation Aware Domains
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Binary Representation Aware Domains Integer Abstractions

Integer Abstractions
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~ Binary Representation Aware Domains Integer Abstractions

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )

Concrete semantics:

@ conversion signed char — unsigned char
— overflows, and maps {—1,0,1} to {0, 1,255}

@ integer promotion: unsigned char — int
—=> value preserving

@ addition in int: = {0, 1,2, 255,256,510}
@ conversion int — signed char
— overflows, and returns {—2,—1,0,1,2}
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )

Interval semantics:

@ conversion signed char — unsigned char
— overflows, and maps [—1, 1] to [0, 255]
= all precision is lost

o the final result is [-128, 127]

Issue:
the actual result [—2,2] is representable in the interval domain
but the intermediate results are not! (not convex)
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )

Modular interval domain:

invariants [/, h| + kZ,k € N (no hypothesis on bit-sizes of types)

@ conversion signed char — unsigned char
— overflows, and maps [—1,1] to [—1,1] + 256Z

@ integer promotion: unsigned char — int
— value preserving

e addition in int: = [—2,2] + 2567

@ conversion int — signed char
= overflows, and returns [—2, 2]
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */
(signed char) ( (unsigned char) x + (unsigned char) y )

Modular interval domain:

no Galois connection  (no best abstraction)
@ [(, h] + 0Z handed exactly as classic intervals

o +f —¥ x* U handed precisely
e.g., ([6,h] + KkZ)+F ([0, ]+ K'Z) = [L+ €', h+ h'] + ged(k, k')Z

o wrap-around: wrap®([¢, h] 4 kZ, [a, b]) =
o [wrap(¢, [a, b]),wrap(h, [a, b])] + 0Z
if [¢, h] + kZ does not cross a + (b — a)Z
o [0, h] +gcd(k, b—a+1)Z
otherwise

@ otherwise use interval information (reduced product)
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Binary Representation Aware Domains Integer Abstractions

Handling implicit integer casts

Code example

signed char x, y, z;

unsigned register rl, r2, r3;
rl = x; r2 = y;

r3 =rl + r2;

z = r3;
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Binary Representation Aware Domains Integer Abstractions

Handling implicit integer casts

Code example

signed char x, y, z;

unsigned register rl, r2, r3;

rl = (unsigned) x; r2 = (unsigned) y;
r3 rl + r2;

z = (signed char) r3;

Use a pool of register variables to perform all computations
type mismatch = overflows and imprecision

e more difficult to detect by syntactic filters
(implicit casts, computations spread on several instructions)

@ can also be handled by modular integers
@ also a common pattern in embedded software

(manual register allocation, helps binary traceability)
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Low-Level Memory Abstraction
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory access examples

Type-punning

union { uint8 bufl[4] = { 1,2,3,4 };
struct { uint8 al,ah,bl,bh } b; uint32 i = *((uint32%*)buf);
struct { uinti16 ax,bx } w;

) 7
r.w.ax = 258; £loat py
if (r.b.al==2) r.b.al++; oat @,v;
if (r.b.a ) r.b.al++; J (it aa) = *((int*)&b) ;
C standard: ill-typed programs, undefined behavior

In practice:
@ there is no error

@ the semantics is well-defined (ABI specification)
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory semantics

Concrete semantics: defined at the bit level

Abstract semantics:

decompose dynamically the memory into cells of scalar type:
@ cell = variable, offset, and scalar type
@ materialize new cells when needed by a dereference
(possible reduction with existing cells)
@ allow overlapping cells, with an intersection semantics

Orthogonality:
@ memory domain: maps variables V to cells C
@ scalar domains: collections of independent cells C — Val

Pointers:

@ concrete: semi-symbolic values: base € V and offset € Z
o abstraction: Cartesian abstraction P(V) x P(Z)

o keep P(V) in a pointer-specific domain

e treat offsets as integer variables in numeric domains
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

0
r.w.ax = 258;
if (r.b.al==2) r.b.al++;
initial state: no cell (T)
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~ Binary Representation Aware Domains
Low-level memory example

Low-Level Memorl Abstraction

r.w.ax = 258;
if (r.b.al==2) r.b.al++;

create r.w.ax, a uint16 cell at offset 0
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

r.w.ax = 258;
if (r.b.al==2) r.b.al++;

S0

create r.b.al, a uint8 cell at offset 0
initialized with: r.w.ax mod 256
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

r.w.ax = 258;

if (r.b.al==2) r.b.al++; .

modify cell r.b.al
destroy invalidated cell r.w.ax
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Floating-Point Domains
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

double cast(int i) {

union { int i[2]; double d; } x, y;

x.1[0] = 0x43300000; y.il[0]
x.i[1] = 0x80000000; y.il[1]
return y.d - x.d;

}

x.i[0];
i~ x.i[1];
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

double cast(int i) {
union { int i[2]; double d; } x, y;
x.1i[0] 0x43300000; y.i[0] = x.i[0];
x.1i[1] 0x80000000; y.i[1] =i ~ x.i[1];
return y.d - x.d;

}

@ 0x43300000 0x80000000 represents 2°2 + 231
@ 0x43300000 0x80000000 ~i represents 2°2 + 231 4 i

@ y.d - x.dequals i
= cast from 32-bit signed int to 64-bit double

Justification:
@ some CPUs miss the cast instruction (PowerPC)

@ do not rely on the compiler to emulate it (code traceability)
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

double cast(int i) {
union { int i[2]; double d; } x, y;
x.1[0] = 0x43300000; y.i[0] = x.i[0];
x.1[1] = 0x80000000; y.i[1] = i -~ x.i[1];
return y.d - x.d;

}

Analysis principle:

@ memory domain: detects union usage
smart initialization at materialization
y.d = dbl_of _word(y.i[0],y.1[1])

@ new ad-hoc symbolic domain: maintains predicates
e V = W"0x80000000 (v.i[1] = i"x.i[1])
o V = dbl_of _word(0x43300000, W) (y.9)
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

double cast(int i) {
union { int i[2]; double d; } x, y;
x.1[0] = 0x43300000; y.i[0] = x.i[0];
x.1[1] = 0x80000000; y.i[1] = i -~ x.i[1];
return y.d - x.d;

}

reduction between intervals and predicates:

@ predicates inferred by pattern-matching of expressions
and values provided by intervals
(0x43300000, 0x80000000)

@ symbolic rewrite rules enrich intervals
(y.d —x.d ~» (double)i)

easy to extent with new predicates and propagation rules!
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Binary Representation Aware Domains Floating-Point Domains

More bit-level float manipulations

Extraction with a bit-mask Extraction with loop

double d; double d, x = 1;
unsigned* p = (unsigned*) &d; int e = 0;
e = ((xp >> 20) & O0x7ff) - 1023; if (d > 1)

while (x < d) {
ett; x *= 2;

}

Both examples extract the exponent of a (normalized) 64-bit float.

Can be handled by:
@ enriching the symbolic domain
o V = hi_word(W)
o V=2WHic7
@ adding new numeric domains
o V/W €[t h] (similar to difference-bound matrices)
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Example application: Astrée

RAIM 2013 - 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 67 / 74



Example application: Astrée

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

@ developed at ENS (since 2001)
‘ B. Blanchet, P. Cousot, R. Cousot, J. Feret,
‘ L. Mauborgne, D. Monniaux, A. Miné, X. Rival

@ industrialized and made commercially available by AbslInt
(since 2009)

A @
G
Astrée Absint

www.astree.ens.fr www.absint.com

[Blanchet et al. 03]
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Astrée

Example applicatio

The Astrée static analyzer

4 Astrée

Project_Analysis Edtors Edit Help

=] 9 “@@@f H=9C A

Example 1: scenarios Analyzed File: /invalid/path/scenarios.c Py @
o Wekcome = i =
Local settings 25 38 e
& rorocesig 26 3s « Type cast causing ovessiow:
# o 40 *f
# Wepgtoorsnalzowces |50 || s = sPEED sENSOR: B . ceem smsons
7. vepons 29 az
30 .
Analysis options o <
" « Precise hanaling of pointer aritmmeti
[ analyssstar (mai) 3z 45 &
g paralization 3| per = aarzayiock(on; 16 pur = carrayBlock[ol:
a
™
— ggl i funtntcialized ) (O 36 if (uninitialized 1)
/" Global directives. I ISR o) = 0x15: 49 ArrayBlock[15] = Ox15; // easy case
; 3
/ cenoral s
D B Ey
Domains
39| if {uninivialized 2) 52 ir (uninivialized 2) ¢
/ oun ol EITRER - ox10; sz s(per + 15) = Oxin; // nara case
a1
Files s s
B e = 1
m
a2 5 « Precise nandling of compute-througi-c
22 ss « Note tnat, by default, elams on expl
e ES) * qeactivatad (ses Options->Gemeral tak
48 z (short) ((unsigned short)vx + (unsig ™ L4
19  ASTREE_assert ((-2<=z 6 z<=2)) 61z = (shore) ((unsigned shorc)vx + (unsigny,
< j 3 || j >
Line 36, Column 0 Line: 49, Column 0
[Flevew
Coveroze s
Possble upon cerference
Posatle oveow pon dareference
st 2 Assaion falurs
Hams: 5 (5) Ser a S
Warming: 1 a contot
Coverager 100%
Duraton: 305
Summary ‘Warnings Log Graph Watch | Messages
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Example application: Astrée

Specialized static analyzers

Design by refinement:

@ focus on a specific family of programs and properties

@ start with a fast and coarse analyzer (intervals)
@ while the precision is insufficient (too many false alarms)
e add new abstract domains (generic or application-specific)

o refine existing domains (better transfer functions)
e improve communication between domains (reductions)
= analyzer specialized for a (infinite) class of programs
o efficient and precise
@ parametric  (by end-users, to analyze new programs in the family)

@ extensible (by developers, to analyze related families)
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Example application: Astrée

Astrée specialization

Specialized:
o for the analysis of run-time errors

(arithmetic overflows, array overflows, divisions by 0, etc.)

@ on embedded critical C software
(no dynamic memory allocation, no recursivity)

@ in particular on control / command software
(reactive programs, intensive floating-point computations)

@ intended for validation
(analysis does not miss any error and tries to minimise false alarms)
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Example application: Astrée

More Abstract Domain Examples

A few of the abstract domains used in Astrée.

octagons congruences
+tX+Y<c X = alb]

boolean decision trees exponentials
X < (14 )t
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Example application: Astrée

Astrée applications (at ENS)

(model of) ESA ATV (2008)

@ size: from 70 000 to 860 000 lines of C
@ analysis time: from 45mn to ~40h
@ alarm(s): 0  (proof of absence of run-time error)
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The end




	Introduction
	Rational Domains
	Intervals domain
	Polyhedra Domain

	Floating-point domains
	Expression linearization
	Sound floating-point polyhedra

	Binary Representation Aware Domains
	Integer Abstractions
	Low-Level Memory Abstraction
	Floating-Point Domains

	Example application: Astrée

