
Generic and specific abstract domains
for static analysis by abstract interpretation

Antoine Miné
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Introduction

Motivation: a classic example

Maiden flight of the Ariane 5 Launcher, 4 June 1996.
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Introduction

Motivation: a classic example

40s after launch. . .

(cause: overflow during an arithmetic conversion)
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Introduction

Lessons

software errors can be costly even simple ones

(Ariane 5 failure estimated at more than 370, 000, 000 US$)

hardware redundancy does not help

(redundant computers run the same software, the same error)

testing is not sufficient

(hardly exhaustive)

programming in high-level “safe” languages is not sufficient

(Ariane 5 coded in Ada, with arithmetic exceptions enabled)

=⇒ use formal methods
(provide rigorous, mathematical insurance about program behaviors)
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Introduction

Lessons

software errors can be costly even simple ones

(Ariane 5 failure estimated at more than 370, 000, 000 US$)

hardware redundancy does not help

(redundant computers run the same software, the same error)

testing is not sufficient

(hardly exhaustive)

programming in high-level “safe” languages is not sufficient

(Ariane 5 coded in Ada, with arithmetic exceptions enabled)

=⇒ use formal methods
(provide rigorous, mathematical insurance about program behaviors)

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 3 / 74



Introduction

Static analysis

Semantic-Based Static Analysis

Infers properties of the dynamic behavior of programs.

analyzes the source code (not a model)

soundness: no behavior is missed (full control and data coverage)

automatic, always terminates

incomplete due to over-approximations (false alarms)

Applications:

check simple properties, with low precision requirements
(optimization in compilers)

can be used to uncover bugs
(Ariane 5 bug detected by Polyspace Analyzer, late 1990s)

can it be used for validation
(0 false alarm goal; e.g, Astrée specialized analyzer, early 2000s)
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Introduction

Example analysis: inferring numeric invariants

Insertion Sort

for i=1 to 99 do

p := T[i]; j := i+1;

while j <= 100 and T[j] < p do

T[j-1] := T[j]; j := j+1;

end;

T[j-1] := p;

end;
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Introduction

Example analysis: inferring numeric invariants

Interval analysis:

Insertion Sort

for i=1 to 99 do

i ∈ [1, 99]
p := T[i]; j := i+1;

i ∈ [1, 99], j ∈ [2, 100]
while j <= 100 and T[j] < p do

i ∈ [1, 99], j ∈ [2, 100]
T[j-1] := T[j]; j := j+1;

i ∈ [1, 99], j ∈ [3, 101]
end;

i ∈ [1, 99], j ∈ [2, 101]
T[j-1] := p;

end;

=⇒ there is no out of bound array access
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Introduction

Example analysis: inferring numeric invariants

Linear inequality analysis:

Insertion Sort

for i=1 to 99 do

i ∈ [1, 99]
p := T[i]; j := i+1;

i ∈ [1, 99], j = i + 1
while j <= 100 and T[j] < p do

i ∈ [1, 99], i + 1 ≤ j ≤ 100
T[j-1] := T[j]; j := j+1;

i ∈ [1, 99], i + 2 ≤ j ≤ 101
end;

i ∈ [1, 99], i + 1 ≤ j ≤ 101
T[j-1] := p;

end;
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Introduction

Abstract interpretation

Abstract interpretation: unifying theory of program semantics

[Cousot Cousot 76]

Core principles:

semantics are linked through abstractions (α, γ)

abstractions can be composed and reused (abstract domain)

semantics are expressed as fixpoints (lfpF )

fixpoints can be approximated by iteration with acceleration
(widening O)

Applications:

compare existing semantics and analyses (unifying power)

derive new semantics by abstraction
derive computable semantics =⇒ sound static analysis
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Introduction

Abstract domain examples

concrete D : {(0, 3), (5.5, 0), (12, 7), . . .} (not computable)

boxes D]b : X ∈ [0; 12] ∧ Y ∈ [0; 8] (linear cost)

polyhedra D]p : 6X + 11Y ≥ 33 ∧ · · · (exponential cost)

=⇒ trade-off cost vs. precision and expressiveness.

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 7 / 74
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Introduction

Correctness proofs and false alarms

Goal: prove that the program never enters an error state

The program is correct (blue ∩ red = ∅)

The polyhedra domain can prove the correctness (cyan ∩ red = ∅)
The intervals domain cannot (green ∩ red 6= ∅, false alarm)

Trade-off between cost and precision (number of false alarms)
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Introduction

Overview

Rational domains
concrete & abstract semantics of a toy language
interval domain
polyhedra domain

Floating-point domains
linearization of float expressions
float polyhedra

Binary representation aware domains
machine integers
memory abstraction
binary float domains

Application: Astrée analyzer
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Rational Domains

Rational Domains
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Rational Domains

Toy language: syntax

arithmetic expressions:

exp ::= V variable V ∈ V
| −exp negation

| exp � exp binary operation: � ∈ {+,−,×, / }
| [c , c ′] constant range, c , c ′ ∈ Q ∪ {±∞}

(c is a shorthand for [c , c])

programs:

prog ::= V := exp assignment
| if exp ./ 0 then prog else prog fi test
| while exp ./ 0 do prog done loop
| prog; prog sequence

Finite set V of variables, with value in Q
(later extended to floats F and machine integers M)
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Rational Domains

Concrete semantics

Semantics of expressions: EJ e K : (V → Q)→ P(Q)

The evaluation of e in ρ gives a set of values:

EJ [c, c ′] K ρ def
= { x ∈ Q | c ≤ x ≤ c ′ }

EJ V K ρ def
= { ρ(V) }

EJ− e K ρ def
= {−v | v ∈ EJ e K ρ }

EJ e1 + e2 K ρ
def
= { v1 + v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }

EJ e1− e2 K ρ
def
= { v1 − v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }

EJ e1× e2 K ρ
def
= { v1 × v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ }

EJ e1 / e2 K ρ
def
= { v1/v2 | v1 ∈ EJ e1 K ρ, v2 ∈ EJ e2 K ρ, v2 6= 0 }
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Rational Domains

Concrete semantics

Semantics of programs: CJ p K : D → D
where D def

= P(V → Q)

A transfer function for p defines a relation on environments ρ ∈ D:

CJ V :=e KX def
= { ρ[ V 7→ v ] | ρ ∈ X , v ∈ EJ e K ρ }

CJ e ./ 0 KX def
= { ρ | ρ ∈ X , ∃v ∈ EJ e K ρ, v ./ 0 }

CJ b1; b2 KX
def
= CJ b2 K (CJ b1 KX )

CJ if e ./ 0 then b1 else b2 KX
def
=

(CJ b1 K ◦ CJ e ./ 0 K )X ∪ (CJ b2 K ◦ CJ e 6./ 0 K )X
CJ while e ./ 0 do b done KX def

=
CJ e 6./ 0 K (lfpλY.X ∪ (CJ b K ◦ CJ e ./ 0 K )Y)

It relates the environments after the execution of a command
to the environments before.
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Rational Domains

Abstract domains

Abstract elements:

D] set of computer-representable elements

γ : D] → D concretization

⊆] approximation order: X ] ⊆] Y] =⇒ γ(X ]) ⊆ γ(Y])

Abstract operators:

C]J c K : D] → D] and ∪] : (D] ×D])→ D]

soundness: (CJ c K ◦ γ)(X ]) ⊆ (γ ◦ C]J c K )(X ])
γ(X ]) ∪ γ(Y]) ⊆ γ(X ] ∪] Y])

Fixpoint extrapolation

O : (D] ×D])→ D] widening

soundness: γ(X ]) ∪ γ(Y]) ⊆ γ(X ] O Y])
termination: ∀ sequence (Y]i )i∈N
the sequence X ]0 = Y]0 , X

]
i+1 = X ]i O Y

]
i+1

stabilizes in finite time: ∃n < ω, X ]n+1 = X ]n
Both semantics and algorithmic aspects.
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Rational Domains

Galois connection

Galois connection definition: (D,⊆) −−−→←−−−α
γ

(D],⊆])

monotonic concretization γ : D] → D
monotonic abstraction α : D → D]

∀X ∈ D:∀Y] ∈ D]:α(X ) ⊆] Y] ⇐⇒ X ⊆ γ(Y])

Application: optimal abstractions

elements X ∈ D have a best abstraction: α(X )

α(X ) =
⋂]{Y] | X ⊆ γ(Y]) }

functions F : D → D have a best abstraction:
F ]

def
= α ◦ F ◦ γ

however optimality does not compose
α ◦ (F1 ◦ F2) ◦ γ ( (α ◦ F1 ◦ γ) ◦ (α ◦ F2 ◦ γ) (γ ◦ α ) id)

provides semantic aspects only, no algorithm!

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 15 / 74



Rational Domains

Abstract semantics

Given by the abstract domain:

sound C]J V :=e K , C]J e ./ 0 K , ∪]

sound and terminating O

Derived analysis: from the concrete. . .

CJ b1; b2 KX
def
= CJ b2 K (CJ b1 KX )

CJ if e ./ 0 then b1 else b2 KX
def
=

(CJ b1 K ◦ CJ e ./ 0 K )X ∪ (CJ b2 K ◦ CJ e 6./ 0 K )X
CJ while e ./ 0 do b done KX def

=
CJ e 6./ 0 K (lfpλY.X ∪ (CJ b K ◦ CJ e ./ 0 K )Y)

The derived analysis is sound and terminates.
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C]J b1; b2 KX ]
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def
=

(C]J b1 K ◦ C]J e ./ 0 K )X ] ∪] (C]J b2 K ◦ C]J e 6./ 0 K )X ]

C]J while e ./ 0 do b done KX ] def
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Rational Domains Intervals domain

Intervals domain
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Rational Domains Intervals domain

Intervals lattice

B] def
= { [a, b] | a ∈ Q ∪ {−∞}, b ∈ Q ∪ {+∞}, a ≤ b }

[Cousot 76]

Galois connection: P(Q) −−−→←−−−
αb

γb B] ∪ {⊥] }

γ([a, b])
def
= { x ∈ Q | a ≤ x ≤ b }

α(X )
def
=

{
⊥] if X = ∅
[minX ,maxX ] otherwise

(α is not always defined, but α ◦ F ◦ γ is generally defined)

Partial order:

[a, b] ⊆] [c , d ]
def⇐⇒ a ≥ c and b ≤ d

>] def
= ]−∞,+∞[

[a, b] ∪] [c , d ]
def
= [min(a, c),max(b, d)]

[a, b] ∩] [c , d ]
def
=

{
[max(a, c),min(b, d)] if max ≤ min
⊥] otherwise
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Rational Domains Intervals domain

Derived abstract domain

Pointwise lifting to an abstraction of P(V → Q):

D] def
= (V → B]) ∪ {⊥] }

>] def
= λV.>]

X ] ⊆] Y] def⇐⇒ X ] = ⊥] ∨ (X ],Y] 6= ⊥] ∧ ∀V:X ](V) ⊆] Y](V))

X ] ∪] Y] def
=

 Y
] if X ] = ⊥]
X ] if Y] = ⊥]
λV.X ](V) ∪] Y](V) otherwise

X ] ∩] Y] def
=

 ⊥
] if X ] = ⊥] or Y] = ⊥]
⊥] if ∃V:X ](V) ∩] Y](V) = ⊥]
λV.X ](V) ∩] Y](V) otherwise
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Rational Domains Intervals domain

Interval abstract arithmetic operators

Based on interval arithmetic [Moore 66]

[c , c ′]]
def
= [c , c ′]

−] [a, b]
def
= [−b,−a]

[a, b] +] [c , d ]
def
= [a + c , b + d ]

[a, b] −] [c, d ]
def
= [a− d , b − c]

[a, b] ×] [c, d ]
def
= [min(ac, ad , bc, bd),max(ac, ad , bc, bd)]

[a, b] /] [c , d ]
def
= · · ·

where ±∞× 0 = 0.

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 20 / 74



Rational Domains Intervals domain

Interval abstract assignment

Abstract evaluation of expressions: E]J e K : D] → B]

E]J e K⊥] def
= ⊥]

if X ] 6= ⊥] :

E]J [c , c ′] KX ] def
= [c , c ′]]

E]J V KX ] def
= X ](V)

E]J−e KX ] def
= −] E]J e KX ]

E]J e1 � e2 KX ]
def
= E]J e1 KX ] �] E]J e2 KX ]

Abstract assignment:

C]J V :=e KX ] def
=

{
⊥] if V] = ⊥]
X ][V 7→ V]] otherwise

where V] = E]J e KX ].

Note: C]JV := e K may not be optimal, even though each �] is.
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Rational Domains Intervals domain

Interval abstract tests

If X ](X) = [a, b] and X ](Y) = [c , d ], we can define:

C]J X− c ≤ 0 KX ] def
=

{
⊥] if a > c
X ][ X 7→ [a,min(b, c)] ] otherwise

C]J X− Y ≤ 0 KX ] def
=

 ⊥
] if a > d
X ][ X 7→ [a,min(b, d)],

Y 7→ [max(c , a), d ] ]
otherwise

General case: constraint programming (HC4)

Note: fall-back operators

C]J e ./ 0 KX ] = X ] is always sound

C]J X :=e KX ] = X ][X 7→ >]] is always sound
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Rational Domains Intervals domain

Interval widening

Widening on non-relational domains:

Given a value widening O: B] × B] → B],
we extend it point-wisely into a widening O: D] ×D] → D]:

X ] O Y] def
= λV.X ](V) O Y](V)

Interval widening example:

⊥] O X ] def
= X ]

[a, b] O [c , d ]
def
=

[{
a if a ≤ c
−∞ otherwise

,

{
b if b ≥ d
+∞ otherwise

]

Unstable bounds are set to ±∞
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Rational Domains Intervals domain

Analysis with widening example

X:=0;

while • X<40 do

X:=X+3

done

We must compute:
C]J X ≥ 40 K (limλY].Y]O(X ]∪]C]J X := X+3 K (C]J X < 40 KY])))

Y]0 = X ] = [0, 0]

Y]1 = Y]0 O (X ] ∪] (Y]0 +] [3, 3])) = [0, 0]O ([0, 0]∪] [3, 3]) = [0,+∞]

Y]2 = Y]1 O (X ] ∪] (Y]1 +] [3, 3])) = [0,+∞]O ([0, 0]∪] [3, 42]) = Y]1
C]J X ≥ 40 K (Y]2) = [42,+∞]

Decreasing iterations: to improve the precision

after stabilization, continue iterating without O (use ∩)

in our case, Y]3 = [0, 42], so C]J X ≥ 40 K (Y]3) = [40, 42]
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Rational Domains Intervals domain

Analysis with widening example

X:=0;

while • X<40 do

X:=X+3

done

We must compute:
C]J X ≥ 40 K (limλY].Y]O(X ]∪]C]J X := X+3 K (C]J X < 40 KY])))

Y]0 = X ] = [0, 0]

Y]1 = Y]0 O (X ] ∪] (Y]0 +] [3, 3])) = [0, 0]O ([0, 0]∪] [3, 3]) = [0,+∞]

Y]2 = Y]1 O (X ] ∪] (Y]1 +] [3, 3])) = [0,+∞]O ([0, 0]∪] [3, 42]) = Y]1
C]J X ≥ 40 K (Y]2) = [42,+∞]

Decreasing iterations: to improve the precision

after stabilization, continue iterating without O (use ∩)

in our case, Y]3 = [0, 42], so C]J X ≥ 40 K (Y]3) = [40, 42]

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 24 / 74



Rational Domains Polyhedra Domain

Polyhedra Domain

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 25 / 74



Rational Domains Polyhedra Domain

The need for relational domains

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while • true do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

X

Y
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Rational Domains Polyhedra Domain

The need for relational domains

Non-relation domains cannot represent variable relationships

Rate limiter

Y:=0; while • true do

X:=[-128,128]; D:=[0,16];

S:=Y; Y:=X; R:=X-S;

if R<=-D then Y:=S-D fi;

if R>=D then Y:=S+D fi

done

X: input signal
Y: output signal
S: last output
R: delta Y-S

D: max. allowed for |R|

Iterations in the interval domain (without widening):

X ]0
• X ]1

• X ]2
• . . . X ]n

•
Y = 0 |Y| ≤ 144 |Y| ≤ 160 . . . |Y| ≤ 128 + 16n

In fact, Y ∈ [−128, 128] always holds.

To prove that, e.g. Y ≥ −128, we must be able to:

represent the properties R = X− S and R ≤ −D
combine them to deduce S− X ≥ D, and then Y = S− D ≥ X
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Rational Domains Polyhedra Domain

Polyhedra domain

Domain proposed by [Cousot Halbwachs 78]

to infer conjunctions of affine inequalities
∧

j (
∑n

i=1 αijVi ≥ βj).

Abstract elements:

LinCons
def
= affine constraints over V with coefficients in Q

D] def
= Pfinite(LinCons)

Concretization:

γ(X ]) def
= { ρ ∈ V → Q | ∀c ∈ X ], ρ |= c }

γ(X ]) is a closed convex polyhedron of (V → Q) ' Q|V|

γ(X ]) may be empty, bounded, or unbounded

γ is not injective
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Rational Domains Polyhedra Domain

Polyhedra representations

No memory bound on the representations (even minimal ones)

No best abstraction α

Dual representation using generators
(double description method)
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Rational Domains Polyhedra Domain

Polyhedra algorithms

Fourier-Motzkin elimination:

Fourier(X ], Vk) eliminates Vk from all the constraints in X ]:

Fourier(X ], Vk)
def
=

{ (
∑

i αiVi ≥ β) ∈ X ] | αk = 0 } ∪
{ (−α−k )c+ + α+

k c
− | c+ = (

∑
i α

+
i Vi ≥ β+) ∈ X ], α+

k > 0,
c− = (

∑
i α
−
i Vi ≥ β−) ∈ X ], α−k < 0 }

Semantics

γ(Fourier(X ], Vk)) = { ρ[Vk 7→ v ] | v ∈ Q, ρ ∈ γ(X ]) }

i.e., forget the value of Vk
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Rational Domains Polyhedra Domain

Polyhedra algorithms

Linear programming:

simplex(X ], ~α)
def
= min {

∑
i αiρ(Vi ) | ρ ∈ γ(X ]) }

Application: remove redundant constraints:

for each c = (
∑

i αiVi ≥ β) ∈ X ]
if β ≤ simplex(X ] \ {c}, ~α), then remove c from X ]

(e.g., Fourier causes a quadratic growth in constraint number,
most of which are redundant)

Note: calling simplex many times can be costly

use fast syntactic checks first

check against the bounding-box first

use simplex as a last resort
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Rational Domains Polyhedra Domain

Polyhedra abstract operators

Order: ⊆]

X ] ⊆] Y] def⇐⇒ ∀(
∑

i αiVi ≥ β) ∈ Y], simplex(X ], ~α) ≥ β
def⇐⇒ γ(X ]) ⊆ γ(Y])

X ] =] Y] def⇐⇒ X ] ⊆] Y] ∧ Y] ⊆] X ]
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Rational Domains Polyhedra Domain

Polyhedra abstract operators (cont.)

Convex hull:

Express a point ~V ∈ X ] ∪] Y] as a convex combination:

~V = σ~X + σ′~Y for ~X ∈ X ], ~Y ∈ Y], σ + σ′ = 1, σ, σ′ ≥ 0

as σ~X + σ′~Y is quadratic

we consider instead: ~V = ~X + ~Y with ~X/σ ∈ X ], ~Y/σ′ ∈ Y]
i.e., ~X ∈ σX ], ~Y ∈ σ′Y]
(adds closure points on unbounded polyhedra)

Formally:

X ] ∪] Y] def
=

Fourier( { (
∑

j αjXj − βσ ≥ 0) | (
∑

j αjVj ≥ β) ∈ X ] } ∪
{ (
∑

j αjYj − βσ′ ≥ 0) | (
∑

j αjVj ≥ β) ∈ Y] } ∪
{ Vj = Xj + Yj | Vj ∈ V } ∪ { σ ≥ 0, σ′ ≥ 0, σ + σ′ = 1 },
{ Xj , Yj | Vj ∈ V } ∪ { σ, σ′ } )

[Benoi et al. 96]
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Rational Domains Polyhedra Domain

Polyhedra abstract operators (cont.)

Precise abstract commands: (exact)

C]J
∑

i αiVi + β ≤ 0 KX ] def
= X ] ∪ {(

∑
i αiVi + β ≤ 0)}

C]J Vj := [−∞,+∞] KX ] def
= Fourier(X ], Vj))

C]J Vj :=
∑

i αiVi + β] KX ] def
=

subst(V 7→ Vi , Fourier((X ] ∪ {V =
∑

i αiVi + β}), Vj))

Fallback abstract commands: (coarse but sound)

C]J e ≤ 0 KX ] def
= X ]

C]J Vj := e KX ] def
= Fourier(X ], Vj)

alternate solution:

apply interval abstract commands to the bounding box
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Rational Domains Polyhedra Domain

Polyhedra widening

Classic widening O in D]

X ] O Y] def
= { c ∈ X ] | Y] ⊆] {c} } ∪
{ c ∈ Y] | ∃c ′ ∈ X ], X ] =] (X ] \ c ′) ∪ {c} }

suppress unstable constraints c ∈ X ], Y] 6⊆] {c}
add back constraints c ∈ Y] equivalent to those in X ]
i.e., when ∃c ′ ∈ X ], X ] =] (X ] \ c ′) ∪ {c}.
(X ] and Y] must have no redundant constraint)

Example:
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Floating-point domains

Floating-point domains
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Floating-point domains

Floating-point uses

Two independent problems:

Implement the analyzer using floating-point

goal: trade precision for efficiency

exact rational arithmetic can be costly
coefficients can grow large (polyhedra)

Analyze floating-point programs

goal: catch run-time errors caused by rounding
(overflow, division by 0, . . . )

Also: a floating-point analyzer for floating-point programs.

Challenge: how to stay sound?
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Floating-point domains

Floating-point computations

The set of floating-point numbers is not closed under +, −, ×, /:

every result is rounded to a representable float,

an overflow or division by 0 generates +∞ or −∞ (overflow);

small numbers are truncated to +0 or −0 (underflow);

some operations are invalid (0/0, (+∞) + (−∞), etc.)
and return NaN.

Observable semantics:

overflows and NaNs halt the program with an error O,

rounding and underflow are not errors,

we do not distinguish between +0 and −0.

=⇒ variable values live in a finite subset F of Q,
expression values live in F ∪ {O}.
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Floating-point domains

Floating-point expressions

Floating-point expressions expf

expf ::= [c, c ′] constant range c , c ′ ∈ F, c ≤ c ′

| V variable V ∈ V
| 	 expf negation
| expf �r expf operator � ∈ {⊕,	,⊗,�}

(we use circled operators to distinguish them from operators in Q)
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Floating-point domains

Concrete semantics of expressions

Semantics of rounding: Rr : Q→ F ∪ {O}.

Example definition:

R+∞(x)
def
=

{
min { y ∈ F | y ≥ x } if x ≤ Mf
O if x > Mf

R−∞(x)
def
=

{
max { y ∈ F | y ≤ x } if x ≥ −Mf
O if x < −Mf

Notes:

∀x , r , R−∞(x) ≤ Rr (x) ≤ R+∞(x)

∀r ,Rr is monotonic
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Floating-point domains

Concrete semantics of expressions (cont.)

EJ ef K : (V → F)→ P(F ∪ {O}) (expression semantics)

EJ V K ρ def
= { ρ(V) }

EJ [c , c ′] K ρ def
= { x ∈ F | c ≤ x ≤ c ′ }

EJ	 ef K ρ
def
= { −x | x ∈ EJ ef K ρ ∩ F } ∪ ({O} ∩ EJ ef K ρ)

EJ ef �r e
′
f K ρ

def
=

{ Rr (x · y) | x ∈ EJ ef K ρ ∩ F, y ∈ EJ e′f K ρ ∩ F } ∪
{ O | if O ∈ EJ ef K ρ ∪ EJ e′f K ρ }
{ O | if 0 ∈ EJ e′f K ρ and � = � }

CJ c K : P(V → F)→ P((V → F) ∪ {O}) (command semantics)

CJ X := ef KX
def
= { ρ[ X 7→ v ] | ρ ∈ X , v ∈ EJ ef K ρ ∩ F }
∪ ({O} ∩ EJ ef KX )

CJ ef ≤ 0 KX def
= { ρ | ρ ∈ X , ∃v ∈ EJ ef K ρ ∩ F, v ≤ 0 }
∪ ({O} ∩ EJ ef KX )
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Floating-point domains

Floating-point interval domain

Representation: B] def
= { [a, b] | a ∈ F, b ∈ F, a ≤ b }

Expression semantics: E]J expf K : (V → B])→ (B] ∪ {O })

[a, b]⊕] [a′, b′]
def
= [R−∞(a + a′),R+∞(b + b′)]

[a, b]	] [a′, b′]
def
= [R−∞(a− b′),R+∞(b − a′)]

[a, b]⊗] [a′, b′]
def
= [ R−∞(min(aa′, ab′, ba′, bb′),

R+∞(max(aa′, ab′, ba′, bb′)]

We suppose r is unknown and assume a worst case rounding.

Soundness stems from the monotonicity of R−∞ and R+∞.

Abstract operators also use float arithmetic (efficiency).

Error management

If some bound in E]J expf K evaluates to O, we

report the error to the user, and

continue the evaluation with >].
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Floating-point domains Expression linearization

Expression linearization
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Floating-point domains Expression linearization

Floating-point issues in relational domains

Relational domains assume many powerful properties on Q:
associativity, distributivity,. . . that are not true on F!

Example: Fourier-Motzkin elimination

X − Y ≤ c ∧ Y − Z ≤ d =⇒ X − Z ≤ c + d

X 	n Y ≤ c ∧ Y 	n Z ≤ d 6=⇒ X 	n Z ≤ c ⊕n d

(X = 1, Y = 1038, Z = −1, c = X	n Y = −1038,
d = Y	n Z = 1038, c ⊕n d = 0, X	n Z = 2 > 0)

We cannot manipulate float expressions as easily as rational ones!

Solution:

keep representing and manipulating rational expressions

abstract float expressions from programs into rational ones

feed them to a rational abstract domain

(optional) implement the rational domain using floats
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Floating-point domains Expression linearization

Affine interval forms

We put expressions in affine interval form: [Miné 04]

exp` ::= [a0, b0] +
∑

k [ak , bk ]× Vk

Semantics:

EJ e` K ρ
def
= { c0 +

∑
k ck × ρ(Vk) | ∀i , ci ∈ [ai , bi ] }

(evaluated in Q)

Advantages:

affine expressions are easy to manipulate

interval coefficients allow non-determinism in expressions,
hence, the opportunity for abstraction

intervals can easily model rounding errors

easy to design algorithms for C]J X :=e` K and C]J e` ≤ 0 K
in most domains
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Floating-point domains Expression linearization

Affine interval form algebra

Operations on affine interval forms:

adding � and subtracting � two forms

multiplying � and dividing � a form by an interval

Using interval arithmetic ⊕], 	], ⊗], �]:
(i0 +

∑
k ik × Vk) � (i ′0 +

∑
k i
′
k × Vk)

def
= (i0 ⊕] i ′0) +

∑
k(ik ⊕] i ′k)× Vk

i � (i0 +
∑

k ik × Vk)
def
= (i ⊗] i0) +

∑
k (i ⊗] ik)× Vk

. . .

Projection: πk : D] → exp`

We suppose we are given an abstract interval projection operator
πk such that:

πk(X ]) = [a, b] such that [a, b] ⊇ { ρ(Vk) | ρ ∈ γ(X ]) }.
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Floating-point domains Expression linearization

Linearization of rational expressions

Intervalization: ι : (exp` ×D])→ exp`

Intervalization flattens the expression into a single interval:
ι(i0 +

∑
k ik × Vk , X ])

def
= i0 ⊕]

∑]
k (ik ⊗] πk(X ])).

Linearization without rounding errors: ` : (exp×D])→ exp`

Defined by induction on the syntax of expressions:

`(V,X ]) def
= [1, 1]× V

`([a, b],X ]) def
= [a, b]

`(e1+e2,X ])
def
= `(e1,X ]) � `(e2,X ])

`(e1−e2,X ])
def
= `(e1,X ]) � `(e2,X ])

`(e1/e2,X ])
def
= `(e1,X ]) � ι(`(e2,X ]),X ])

`(e1×e2,X ])
def
= can be

{
either ι(`(e1,X ]),X ]) � `(e2,X ])
or ι(`(e2,X ]),X ]) � `(e1,X ])
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Floating-point domains Expression linearization

Linearization of floating-point expressions

Rounding an affine interval form: (32-bit single precision)

if the result is normalized: we have a relative error ε
with magnitude 2−23:

ε([a0, b0] +
∑

k [ak , bk ]× Vk)
def
=

max(|a0|, |b0|)× [−2−23, 2−23] +∑
k(max(|ak |, |bk |)× [−2−23, 2−23]× Vk)

if the result is denormalized, we have an absolute error
ω

def
= [−2−159, 2−159].

=⇒ we sum these two sources of rounding errors

Linearization with rounding errors: ` : (expf ×D])→ exp`

`(e1 ⊕r e2,X ])
def
=

`(e1,X ]) � `(e2,X ]) � ε(`(e1,X ])) � ε(`(e2,X ])) � ω

`(e1 ⊗r e2,X ])
def
=

ι(`(e1,X ]),X ]) � (`(e2,X ]) � ε(`(e2,X ]))) � ω

. . .
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Floating-point domains Expression linearization

Applications of the floating-point linearization

Soundness of the linearization

∀e, ∀X ] ∈ D], ∀ρ ∈ γ(X ]),
if O /∈ EJ e K ρ, then EJ e K ρ ⊆ EJ `(e,X ]) K ρ

Application: C]J V :=e KX ]

check that O /∈ EJ e K ρ for ρ ∈ γ(X ]) with interval arithmetic

compute C]J V :=e KX ] as C]J V :=`(e,X ]) KX ]

(use C]J V :=[−Mf ,Mf ] KX ] if O ∈ EJ e K ρ)
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Floating-point domains Sound floating-point polyhedra

Sound floating-point polyhedra
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Floating-point domains Sound floating-point polyhedra

Sound floating-point polyhedra

Algorithms to adapt: [Chen al. 08]

linear programming:

simplex f (X ], ~α) ≤ simplex(X ], ~α)

simplex(X ], ~α)
def
= min {

∑
k αkρ(Vk) | ρ ∈ γ(X ]) }

Fourier-Motzkin elimination:

Fourier f (X ], Vk)⇐= Fourier(X ], Vk)

Fourier(X ], Vk)
def
=

{ (
∑

i αiVi ≥ β) ∈ X ] | αk = 0 } ∪
{ (−α−k )c+ + α+

k c
− | c+ = (

∑
i α

+
i Vi ≥ β+) ∈ X ], α+

k > 0,
c− = (

∑
i α
−
i Vi ≥ β−) ∈ X ], α−k < 0 }
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Floating-point domains Sound floating-point polyhedra

Sound floating-point linear programming

Guaranteed linear programming: [Neumaier Shcherbina 04]

Goal: under-approximate µ = min { ~c · ~x |M× ~x ≤ ~b }
knowing that ~x ∈ [~xl , ~xh] (bounding-box for γ(X ])).

compute any approximation µ̃ of the dual problem:
µ̃ ' µ = max { ~b · ~y | tM× ~y = ~c , ~y ≤ ~0 }
and the corresponding vector ~y

(e.g. using an off-the-shelf solver; µ̃ may over-approximate or

under-approximate µ)

compute with intervals safe bounds [~rl , ~rh] for A× ~y − ~c :
[~rl , ~rh] = (tA⊗] ~y)	] ~c

and then:
ν = inf((~b ⊗] ~y)	] ([~rl , ~rh]⊗] [~xl , ~xh]))

then: ν ≤ µ.
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Floating-point domains Sound floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination

Given:

c+ = (
∑

i α
+
i Vi ≥ β+) with α+

k > 0

c− = (
∑

i α
−
i Vi ≥ β−) with α−k < 0

a bounding-box of γ(X ]): [~xl , ~xh]

We wish to compute
∑

i 6=k αiVi ≥ β in F
implied by (−α−k )c+ + α+

k c
− in γ(X ]).

normalize c+ and c− using interval arithmetic:{
Vk +

∑
i 6=k (α+

i �] α
+
k )Vi ≥ β+ �] α+

k

−Vk +
∑

i 6=k (α−i �] (−α−k ))Vi ≥ β− �] (−α−k )

(interval affine forms)

add them using interval arithmetic:∑
i 6=k [ai , bi ]Vi ≥ [a0, b0]

where [ai , bi ] = (α+
i �] α

+
k )	] (α−i �] α

−
k ),

[a0, b0] = (β+ �] α+
k )	] (β− �] α−k ).
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Floating-point domains Sound floating-point polyhedra

Sound floating-point Fourier-Motzkin elimination (cont.)

linearize the interval affine form
∑

i 6=k [ai , bi ]Vi ≥ [a0, b0]
into an affine form

∑
i 6=k αiVi ≥ β

we choose:

αi ∈ [ai , bi ]

β = sup ([a0, b0]⊕]
⊕]

i 6=k(|αi 	] [ai , bi ]|)⊗] |[~xl , ~xh]|)

Soundness:

For all choices of αi ∈ [ai , bi ],∑
i 6=k αiVk ≥ β holds in Fourier(X ], Vk).

(e.g. αi = (ai ⊕n bi )� 2)

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 53 / 74



Floating-point domains Sound floating-point polyhedra

Consequences of rounding

Precision loss:

Projection:

γ(Fourier f (X ], Vk)) ⊇ { ρ[Vk 7→ v ] | v ∈ Q, ρ ∈ γ(X ]) }
=

CJ Vk := [−∞,+∞] K γ(X ])

Order:

X ] ⊆] Y] =⇒ γ(X ]) ⊆ γ(Y]) ( 6⇐)

Join:

γ(X ] ∪] Y]) ⊇ ConvexHull(γ(X ]) ∪ γ(Y])) ( 6=)

Efficiency loss:

cannot remove all redundant constraints
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Floating-point domains Sound floating-point polyhedra

Abstraction summary

Floating-point polyhedra analyzer for floating-point programs

expression abstraction environment abstraction

float expression ef

↓ linearization P(V → F)

affine form e` in Q ↓ abstract domain

↓ float implementation polyhedra in Q
affine form e` in F −→ ↓ float implementation

polyhedra in F
↓ widening

polyhedra in F
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Binary Representation Aware Domains

Binary Representation Aware Domains
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Binary Representation Aware Domains Integer Abstractions

Integer Abstractions
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ( (unsigned char) x + (unsigned char) y )
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ( (unsigned char) x + (unsigned char) y )

Concrete semantics:

conversion signed char → unsigned char

=⇒ overflows, and maps {−1, 0, 1} to {0, 1, 255}
integer promotion: unsigned char → int

=⇒ value preserving

addition in int: =⇒ {0, 1, 2, 255, 256, 510}
conversion int → signed char

=⇒ overflows, and returns {−2,−1, 0, 1, 2}
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ( (unsigned char) x + (unsigned char) y )

Interval semantics:

conversion signed char → unsigned char

=⇒ overflows, and maps [−1, 1] to [0, 255]
=⇒ all precision is lost

the final result is [−128, 127]

Issue:
the actual result [−2, 2] is representable in the interval domain
but the intermediate results are not! (not convex)
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ( (unsigned char) x + (unsigned char) y )

Modular interval domain:

invariants [`, h] + kZ, k ∈ N (no hypothesis on bit-sizes of types)

conversion signed char → unsigned char

=⇒ overflows, and maps [−1, 1] to [−1, 1] + 256Z
integer promotion: unsigned char → int

=⇒ value preserving

addition in int: =⇒ [−2, 2] + 256Z
conversion int → signed char

=⇒ overflows, and returns [−2, 2]
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Binary Representation Aware Domains Integer Abstractions

Handling integer casts

Compute-through-overflow

signed char x, y; /* in [-1,1] */

(signed char) ( (unsigned char) x + (unsigned char) y )

Modular interval domain:

no Galois connection (no best abstraction)

[`, h] + 0Z handed exactly as classic intervals

+], −], ×], ∪] handed precisely
e.g., ([`, h] + kZ) +] ([`′, h′] + k ′Z) = [`+ `′, h + h′] + gcd(k , k ′)Z

wrap-around: wrap]([`, h] + kZ, [a, b]) =

[wrap(`, [a, b]),wrap(h, [a, b])] + 0Z
if [`, h] + kZ does not cross a + (b − a)Z

[`, h] + gcd(k , b − a + 1)Z
otherwise

otherwise use interval information (reduced product)
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Binary Representation Aware Domains Integer Abstractions

Handling implicit integer casts

Code example

signed char x, y, z;

unsigned register r1, r2, r3;

r1 = x; r2 = y;

r3 = r1 + r2;

z = r3;
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Binary Representation Aware Domains Integer Abstractions

Handling implicit integer casts

Code example

signed char x, y, z;

unsigned register r1, r2, r3;

r1 = (unsigned) x; r2 = (unsigned) y;

r3 = r1 + r2;

z = (signed char) r3;

Use a pool of register variables to perform all computations
type mismatch =⇒ overflows and imprecision

more difficult to detect by syntactic filters
(implicit casts, computations spread on several instructions)

can also be handled by modular integers

also a common pattern in embedded software
(manual register allocation, helps binary traceability)
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-Level Memory Abstraction
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory access examples

Union

union {

struct { uint8 al,ah,bl,bh } b;

struct { uint16 ax,bx } w;

} r;

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

Type-punning

uint8 buf[4] = { 1,2,3,4 };

uint32 i = *((uint32*)buf);

Fast copy

float a,b;

*((int*)&a) = *((int*)&b);

C standard: ill-typed programs, undefined behavior

In practice:

there is no error

the semantics is well-defined (ABI specification)
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory semantics

Concrete semantics: defined at the bit level

Abstract semantics:

decompose dynamically the memory into cells of scalar type:

cell = variable, offset, and scalar type

materialize new cells when needed by a dereference
(possible reduction with existing cells)

allow overlapping cells, with an intersection semantics

Orthogonality:

memory domain: maps variables V to cells C
scalar domains: collections of independent cells C → Val

Pointers:

concrete: semi-symbolic values: base ∈ V and offset ∈ Z
abstraction: Cartesian abstraction P(V)× P(Z)

keep P(V) in a pointer-specific domain
treat offsets as integer variables in numeric domains
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

Union

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

0 1 2
...

initial state: no cell (>)
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

Union

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

0 1 2
...

ax

258

create r.w.ax, a uint16 cell at offset 0

RAIM 2013 – 19 November 2013 Static analysis by abstract interpretation Antoine Miné p. 63 / 74



Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

Union

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

0 1 2
...

ax

258

al

2

create r.b.al, a uint8 cell at offset 0
initialized with: r.w.ax mod 256
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Binary Representation Aware Domains Low-Level Memory Abstraction

Low-level memory example

Union

r.w.ax = 258;

if (r.b.al==2) r.b.al++;

0 1 2
...

al

3

modify cell r.b.al
destroy invalidated cell r.w.ax
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Binary Representation Aware Domains Floating-Point Domains

Floating-Point Domains
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

Cast

double cast(int i) {
union { int i[2]; double d; } x, y;

x.i[0] = 0x43300000; y.i[0] = x.i[0];

x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];

return y.d - x.d;

}
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

Cast

double cast(int i) {
union { int i[2]; double d; } x, y;

x.i[0] = 0x43300000; y.i[0] = x.i[0];

x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

0x43300000 0x80000000 represents 252 + 231

0x43300000 0x80000000 ^i represents 252 + 231 + i

y.d - x.d equals i

=⇒ cast from 32-bit signed int to 64-bit double

Justification:

some CPUs miss the cast instruction (PowerPC)

do not rely on the compiler to emulate it (code traceability)
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

Cast

double cast(int i) {
union { int i[2]; double d; } x, y;

x.i[0] = 0x43300000; y.i[0] = x.i[0];

x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

Analysis principle:

memory domain: detects union usage
smart initialization at materialization
y.d = dbl of word(y.i[0], y.i[1])

new ad-hoc symbolic domain: maintains predicates

V = Wˆ0x80000000 (y.i[1] = iˆx.i[1])
V = dbl of word(0x43300000, W) (y.d)
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Binary Representation Aware Domains Floating-Point Domains

Bit-level float manipulations

Cast

double cast(int i) {
union { int i[2]; double d; } x, y;

x.i[0] = 0x43300000; y.i[0] = x.i[0];

x.i[1] = 0x80000000; y.i[1] = i ^ x.i[1];

return y.d - x.d;

}

reduction between intervals and predicates:

predicates inferred by pattern-matching of expressions
and values provided by intervals

(0x43300000, 0x80000000)

symbolic rewrite rules enrich intervals
(y.d− x.d  (double)i)

easy to extent with new predicates and propagation rules!
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Binary Representation Aware Domains Floating-Point Domains

More bit-level float manipulations

Extraction with a bit-mask

double d;

unsigned* p = (unsigned*) &d;

e = ((*p >> 20) & 0x7ff) - 1023;

Extraction with loop

double d, x = 1;

int e = 0;

if (d > 1)

while (x < d) {
e++; x *= 2;

}

Both examples extract the exponent of a (normalized) 64-bit float.

Can be handled by:
enriching the symbolic domain

V = hi word(W )
V = 2W+i , i ∈ Z

adding new numeric domains
V /W ∈ [`, h] (similar to difference-bound matrices)
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Example application: Astrée
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Example application: Astrée

The Astrée static analyzer

Analyseur statique de programmes temps-réels embarqués
(static analyzer for real-time embedded software)

developed at ENS (since 2001)
B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, D. Monniaux, A. Miné, X. Rival

industrialized and made commercially available by AbsInt
(since 2009)

Astrée
www.astree.ens.fr

AbsInt
www.absint.com

[Blanchet et al. 03]
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Example application: Astrée

The Astrée static analyzer
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Example application: Astrée

Specialized static analyzers

Design by refinement:

focus on a specific family of programs and properties

start with a fast and coarse analyzer (intervals)

while the precision is insufficient (too many false alarms)

add new abstract domains (generic or application-specific)
refine existing domains (better transfer functions)
improve communication between domains (reductions)

=⇒ analyzer specialized for a (infinite) class of programs

efficient and precise

parametric (by end-users, to analyze new programs in the family)

extensible (by developers, to analyze related families)
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Example application: Astrée

Astrée specialization

Specialized:

for the analysis of run-time errors
(arithmetic overflows, array overflows, divisions by 0, etc.)

on embedded critical C software
(no dynamic memory allocation, no recursivity)

in particular on control / command software
(reactive programs, intensive floating-point computations)

intended for validation
(analysis does not miss any error and tries to minimise false alarms)
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Example application: Astrée

More Abstract Domain Examples

A few of the abstract domains used in Astrée.

octagons congruences ellipsoids
±X ± Y ≤ c X ≡ a [b] digital filters

boolean decision trees exponentials trace partitions
X ≤ (1 + α)βt
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Example application: Astrée

Astrée applications (at ENS)

Airbus A340-300 (2003) Airbus A380 (2004)

(model of) ESA ATV (2008)

size: from 70 000 to 860 000 lines of C

analysis time: from 45mn to '40h

alarm(s): 0 (proof of absence of run-time error)
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Example application: Astrée

The end
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