A Quadratically Convergent Algorithm for Structured Low-Rank Approximation

Éric Schost, Pierre-Jean Spaenlehauer

Western University, London, Canada Max Planck Institute for Mathematics, Bonn, Germany

> RAIM IHP, Nov. 20, 2013

Problem Statement

 $p, q, r \in \mathbb{N}$ E a linear/affine subspace of $p \times q$ matrices with real entries For $(M_{i,j})$ a $p \times q$ matrix, $||M||_F = \sqrt{\sum_{i,j} M_{i,j}^2}$, $\langle M_1, M_2 \rangle = \operatorname{trace}(M_1 \cdot M_2^T)$

Problem Statement

 $p, q, r \in \mathbb{N}$ E a linear/affine subspace of $p \times q$ matrices with real entries For $(M_{i,j})$ a $p \times q$ matrix, $||M||_F = \sqrt{\sum_{i,j} M_{i,j}^2}$, $\langle M_1, M_2 \rangle = \operatorname{trace}(M_1 \cdot M_2^T)$

Structured Low-Rank Approximation

Given $M \in E$, compute a matrix $\hat{M} \in E$ such that

Problem Statement

 $p, q, r \in \mathbb{N}$ E a linear/affine subspace of $p \times q$ matrices with real entries For $(M_{i,j})$ a $p \times q$ matrix, $||M||_F = \sqrt{\sum_{i,j} M_{i,j}^2}$, $\langle M_1, M_2 \rangle = \operatorname{trace}(M_1 \cdot M_2^T)$

Structured Low-Rank Approximation

Given $M \in E$, compute **a matrix** $\hat{M} \in E$ such that

"Behind every linear data modeling problem there is a (hidden) low-rank approximation problem: the model imposes relations on the data which render a matrix constructed from exact data rank deficient." Markovsky, 08 ■ *E* =**Sylvester matrices** ~→ univariate approximate GCD

$$\begin{bmatrix} a_3 & 0 & b_2 & 0 & 0 \\ a_2 & a_3 & b_1 & b_2 & 0 \\ a_1 & a_2 & b_0 & b_1 & b_2 \\ a_0 & a_1 & 0 & b_0 & b_1 \\ 0 & a_0 & 0 & 0 & b_0 \end{bmatrix}$$

Examples and applications

- *E* =**Sylvester matrices** ~→ univariate approximate GCD
- *E* =**Hankel matrices** ~→ denoising, signal processing

$$\begin{bmatrix} a & b & c & d & e \\ b & c & d & e & f \\ c & d & e & f & g \\ d & e & f & g & h \\ e & f & g & h & i \end{bmatrix}$$

Examples and applications

- *E* =**Sylvester matrices** ~→ univariate approximate GCD
- *E* =**Hankel matrices** ~→ denoising, signal processing
- *E* =affine coordinate spaces ~→ matrix completion

$$\begin{bmatrix} 3 & ? & ? & 5 & 5 \\ 1 & 2 & 3 & 2 & ? \\ 10 & 4 & ? & 9 & -4 \\ 6 & ? & 3 & 9 & 10 \\ ? & 5 & -2 & ? & 9 \end{bmatrix}$$

Examples and applications

- *E* =**Sylvester matrices** ~→ univariate approximate GCD
- *E* = Hankel matrices ~→ denoising, signal processing
- *E* =affine coordinate spaces ~→ matrix completion
- *E* =**Ruppert matrices** ~→ multivariate factorization

$$\begin{bmatrix} 0 & -2 & -a & 0 & -2b & -d \\ -1 & 0 & c & -b & 0 & e \\ a & 2c & 0 & d & 2e & 0 \\ 0 & 0 & 0 & 1 & a & c \\ 0 & 0 & 0 & -b & -d & -e \end{bmatrix}$$

 $XY^2 + aXY + bY^2 + cX + dY + e \in \mathbb{C}[X, Y]$ factors $\Leftrightarrow \operatorname{rank} \leq 4$

Main results

\mathscr{D}_r : manifold of $p \times q$ matrices of rank r E: linear/affine subspace of $p \times q$ matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic convergence under mild transversality assumptions.

Main results

\mathcal{D}_r : manifold of $p \times q$ matrices of rank rE: linear/affine subspace of $p \times q$ matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic convergence under mild transversality assumptions.

More precisely: for any smooth point $\zeta \in \mathscr{D}_r \cap E$ where \mathscr{D}_r and Eintersect transversely, there exists a small neighborhood $U \supset \zeta$ such that for any input matrix $M_0 \in U$,

• the sequence of iterates M_1, M_2, \ldots converges quadratically towards $M_{\infty} \in \mathscr{D}_r \cap E$, *i.e.* $\|M_i - M_{\infty}\| \le (1/2)^{2^i - 1} \|M_0 - M_{\infty}\|$

\mathcal{D}_r : manifold of $p \times q$ matrices of rank rE: linear/affine subspace of $p \times q$ matrices

Algorithm NewtonSLRA

NewtonSLRA: iterative algorithm with proven local quadratic convergence under mild transversality assumptions.

More precisely: for any smooth point $\zeta \in \mathscr{D}_r \cap E$ where \mathscr{D}_r and Eintersect transversely, there exists a small neighborhood $U \supset \zeta$ such that for any input matrix $M_0 \in U$,

- the sequence of iterates M₁, M₂,... converges quadratically towards M_∞ ∈ D_r ∩ E, *i.e.* ||M_i − M_∞|| ≤ (1/2)^{2ⁱ−1} ||M₀ − M_∞||
- Let \hat{M} be the **nearest solution**; then $\left\| M_{\infty} - \hat{M} \right\| = O(\operatorname{dist}(M_0, \mathscr{D}_r \cap E)^2).$

Eckart-Young theorem

Let $M = U \cdot S \cdot V^{\mathsf{T}}$ be the Singular Value Decomposition of M, where $S = \text{Diag}(\sigma_1, \ldots, \sigma_q)$ with $\sigma_1 \ge \cdots \ge \sigma_q$. Set $\widehat{S} = \text{Diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)$. Then $\widehat{M} = U \cdot \widehat{S} \cdot V^{\mathsf{T}}$ is the rank r matrix which minimizes the Frobenius distance to M.

Eckart-Young theorem

Let
$$M = U \cdot S \cdot V^{\mathsf{T}}$$
 be the Singular Value Decomposition of M ,
where $S = \text{Diag}(\sigma_1, \ldots, \sigma_q)$ with $\sigma_1 \ge \cdots \ge \sigma_q$.
Set $\widehat{S} = \text{Diag}(\sigma_1, \ldots, \sigma_r, 0, \ldots, 0)$.
Then $\widehat{M} = U \cdot \widehat{S} \cdot V^{\mathsf{T}}$ is the rank r matrix which minimizes the
Frobenius distance to M .

Cadzow's algorithm (Cadzow, 88, Lewis/Malick 08):

project on \mathcal{D}_r (the **manifold** of matrices of rank r) with **SVD**;

project back on E.

Converges **linearly** towards a point in $\mathscr{D}_r \cap E$. Does not converge to the **nearest solution**.

Classical Newton's method for $f : \mathbb{R}^n \to \mathbb{R}^n$

$$N_f(x) = Df(x)^{-1}(f(x)).$$

Quadratic convergence when Df is locally invertible.

Classical Newton's method for $f : \mathbb{R}^n \to \mathbb{R}^n$

$$N_f(x) = Df(x)^{-1}(f(x)).$$

Quadratic convergence when *Df* is locally invertible.

Newton's method for underdetermined systems: $f : \mathbb{R}^m \to \mathbb{R}^n$, $N_f(x) = Df(x)^{\dagger}(f(x))$. Df^{\dagger} : Moore-Penrose pseudo-inverse. Classical Newton's method for $f : \mathbb{R}^n \to \mathbb{R}^n$

$$N_f(x) = Df(x)^{-1}(f(x)).$$

Quadratic convergence when Df is locally invertible.

Newton's method for underdetermined systems: $f : \mathbb{R}^m \to \mathbb{R}^n$, $N_f(x) = Df(x)^{\dagger}(f(x))$. Df^{\dagger} : Moore-Penrose pseudo-inverse.

Quadratic convergence towards a point x_{∞} such that $f(x_{\infty}) = 0$ when Df is locally surjective.

Classical Newton's method for $f : \mathbb{R}^n \to \mathbb{R}^n$

$$N_f(x) = Df(x)^{-1}(f(x)).$$

Quadratic convergence when Df is locally invertible.

Newton's method for underdetermined systems: $f : \mathbb{R}^m \to \mathbb{R}^n$, $N_f(x) = Df(x)^{\dagger}(f(x))$. Df^{\dagger} : Moore-Penrose pseudo-inverse.

Quadratic convergence towards a point x_{∞} such that $f(x_{\infty}) = 0$ when Df is locally surjective.

If x_0 is the starting point of the iteration, let

$$\hat{x} = \operatorname{argmin}_{f(y)=0} \|y - x_0\|.$$

Does not converge to the nearest solution \hat{x} , but

$$||x_{\infty} - \hat{x}|| = O(||x_0 - \hat{x}||^2).$$

Ben-Israel 66, Allgower/Georg 90, Beyn 93, Shub/Smale 96, Dedieu/Shub 00, Dedieu/Kim 02, Dedieu 06

 $\overline{\mathscr{D}_r}$: algebraic variety of matrices of rank at most r. \rightarrow well-studied in algebraic geometry/commutative algebra Bruns, Conca, Eisenbud, Herzog, Lascoux, Room, Sturmfels,... $\overline{\mathscr{D}_r}$: algebraic variety of matrices of rank at most r. \rightsquigarrow well-studied in algebraic geometry/commutative algebra Bruns, Conca, Eisenbud, Herzog, Lascoux, Room, Sturmfels,...

Classical theorem

Let *M* be $p \times q$ matrix of rank *r*. Then the **normal space** to \mathcal{D}_r at *M* is

 $\operatorname{Ker}(M^{\intercal}) \otimes \operatorname{Ker}(M).$

Bases of the kernels of M and M^{T} can be read off from the Singular Value Decomposition of M.

1: procedure NewtonSLRA($M \in E$, (E_1, \ldots, E_d) an orthonormal basis of $E, r \in \mathbb{N}$)

2:
$$(U, S, V) \leftarrow \text{SVD}(M)$$

3:
$$S_r \leftarrow r \times r$$
 top-left submatrix of S

4:
$$U_r \leftarrow \text{first } r \text{ columns of } U$$

5:
$$V_r \leftarrow \text{first } r \text{ columns of } V$$

6:
$$M \leftarrow U_r \cdot S_r \cdot V_r^{\mathsf{T}}$$

7:
$$\widetilde{u_1}, \ldots, \widetilde{u_{p-r}} \leftarrow \text{last } p-r \text{ columns of } U$$

8:
$$\widetilde{v_1}, \ldots, \widetilde{v_{q-r}} \leftarrow \text{last } q - r \text{ columns of } V$$

9: for
$$i \in \{1, \dots, p-r\}, j \in \{1, \dots, q-r\}$$
 do
10: $N_{(i-1)(q-r)+i} \leftarrow \widetilde{u}_i \cdot \widetilde{v}_i^{\mathsf{T}}$

10:
$$N_{(i-1)(q-r)+j} \leftarrow \widetilde{u}_i \cdot \widetilde{u}_i$$

11:end for

12:
$$A \leftarrow (\langle N_i, E_j \rangle)_{i,j}$$

13:
$$b \leftarrow (\langle N_i, M - M \rangle)_i$$

14: return
$$M + [E_1 \dots E_d] \cdot A^{\dagger} \cdot b$$

Quadratic convergence

For any **smooth** point $\zeta \in \mathscr{D}_r \cap E$ where \mathscr{D}_r and E intersect **transversely**, there exists a small neighborhood $U \supset \zeta$ such that for any input matrix $M_0 \in U$,

- the sequence of iterates M_1, M_2, \ldots converges quadratically towards a matrix $M_\infty \in \mathscr{D}_r \cap E$, *i.e.* $\|M_i - M_\infty\| \le (1/2)^{2^{i-1}} \|M_0 - M_\infty\|$
- Let \hat{M} be the **nearest solution**; then $\left\| M_{\infty} - \hat{M} \right\| = O(\operatorname{dist}(M_0, \mathscr{D}_r \cap E)^2).$

Quadratic convergence

For any **smooth** point $\zeta \in \mathscr{D}_r \cap E$ where \mathscr{D}_r and E intersect **transversely**, there exists a small neighborhood $U \supset \zeta$ such that for any input matrix $M_0 \in U$,

- the sequence of iterates $M_1, M_2, ...$ converges quadratically towards a matrix $M_\infty \in \mathscr{D}_r \cap E$, *i.e.* $\|M_i - M_\infty\| \le (1/2)^{2^i - 1} \|M_0 - M_\infty\|$
- Let \hat{M} be the **nearest solution**; then $\left\| M_{\infty} - \hat{M} \right\| = O(\operatorname{dist}(M_0, \mathscr{D}_r \cap E)^2).$

Sketch of proof:

- lower bound for α ;
- **Taylor approximation of** $\Pi_{\mathscr{D}_r}$;
- manage corrective terms when $\dim(\mathscr{D}_r \cap E) > 0.$

- Combines the generality of alternating projections and the quadratic convergence of Newton's method.
- Computationally most intensive step: computing the SVD (polynomial in p, q at fixed precision).
- Algorithm for SLRA with proven quadratic rate of convergence.

Experimental results: approximate GCD/Sylvester matrices

Comparison with GPGCD, Terui, ISSAC'09.

Comparison with GPGCD, Terui, ISSAC'09.

Fast convergence towards $\mathscr{D}_r \cap E$

~> starting point for a certified Gauss-Newton iteration Yakoubsohn/Masmoudi/Chèze/Auroux 06

Linear sections of determinantal varieties

rich **structure** with a lot of facets (numeric/symbolic, finite fields/characteristic 0, real solutions) which appears in many applications.

- Low-rank matrix completion, Hankel matrices.
- Algebraic properties of special linear subspaces

 → Euclidean distance degree, Ottaviani/S./Sturmfels '13.
- **Certification** of NewtonSLRA *a la Dedieu*: α, γ theorems?

Linear sections of determinantal varieties

rich **structure** with a lot of facets (numeric/symbolic, finite fields/characteristic 0, real solutions) which appears in many applications.

- Low-rank matrix completion, Hankel matrices.
- Algebraic properties of special linear subspaces

 → Euclidean distance degree, Ottaviani/S./Sturmfels '13.
- **Certification** of NewtonSLRA *a la Dedieu*: α, γ theorems?

Thank you!

Approximate GCD

Let $m, n, d \in \mathbb{N}$, $f, g \in \mathbb{R}[x]$ with $\deg(f) = m, \deg(g) = n$. Find $f^*, g^* \in \mathbb{R}[x]$, $\deg(f^*) = m$, $\deg(g^*) = n$ such that

 $\mathsf{deg}(\mathsf{GCD}(f^*,g^*)) \geq d$

and (f^*, g^*) are close to (f, g).

• needs a **distance** on the pairs (f, g):

$$\|(\sum_{i=0}^m f_i x^i, \sum_{j=0}^n g_j x^j)\|^2 = \sum_{i=0}^m f_i^2 + \sum_{j=0}^n g_j^2.$$

 What does "close" mean
 → quasi-GCD, Schönage 85
 → ε-GCD, Emiris/Galligo/Lombardi 97, Zeng/Dayton 04, Bini/Boito 06-09
 → nearest pair for a given norm, Karmarkar/Lakshman 98,

Kaltofen/Zhi/Yang 05-08, Terui 09

$$\begin{bmatrix} ? & 4 & ? & ? \\ ? & ? & ? & ? \\ 1 & ? & ? & ? \\ ? & ? & ? & ? \end{bmatrix}$$

$$\begin{bmatrix} ? & 4 & ? & ? \\ ? & ? & 7 & ? \\ 1 & ? & ? & ? \\ ? & ? & ? & ? \end{bmatrix}$$

$$\begin{bmatrix} ? & 4 & ? & ? \\ ? & ? & 7 & ? \\ 1 & ? & 9 & ? \\ ? & ? & ? & ? \end{bmatrix}$$

Uncover *m* entries at random.

How many entries do we need? How to reconstruct the matrix?

 ?
 4
 ?
 ?

 ?
 ?
 7
 ?

 1
 ?
 9
 ?

 ?
 ?
 ?
 7

Uncover *m* entries at random.

How many entries do we need? How to reconstruct the matrix?

Alternating minimization, Jain, Netrapalli, Sanghavi, 12

 Riemannian optimization, Absil/Amodei/Meyer 12, Vandereycken 12

Convex relaxation, Candes, Tao, Plan, Recht, 09-13

Experimental results

Overdetermined SLRA problems

Transversality assumption do not hold \rightsquigarrow no quadratic convergence. Square matrix of size p = 40

The Euclidean distance degree Draisma/Horobet/Ottaviani/Sturmfels/Thomas 13

 $V \in \mathbb{C}^n$ an algebraic variety, $\mathbf{u} \in \mathbb{C}^n$ a generic point. The **EDdegree** of V is the number of **complex critical points** of the function

$$\lambda_1(x_1-u_1)^2+\cdots+\lambda_n(x_n-u_n)^2$$

on the smooth locus of V.

EDdegree(ellipse) = 4.

Nearest solution of SLRA:

critical point of the distance function on a **linear section of a determinantal variety** $\mathscr{D}_r \cap E$.

EDdegree of linear sections of determinantal varieties

Proposition (Draisma/Horobet/Ottaviani/Sturmfels/Thomas)

Under transversality assumptions with a special quadric and for generic weights, the **EDdegree** of a projective variety is the sum of the degrees of its **polar classes**.

How many **real solutions**? Important information for numerical algorithms.

→ ED discriminant

What happens if the variety is a generic/special linear section of a determinantal variety?