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Isolating Real Roots using the Descartes Method

Problem
Given a (square-free) polynomial f ∈ R[x ], compute disjoint
intervals I1, . . . , Im (rational endpoints) such that each Ij
contains exactly one root and their union covers all real roots.

The Descartes Method
Recursive interval bisection using Descartes’ Rule of Signs to
test for roots.

Easy to understand and to implement
Performs very well in practice
Well suited for exact and complete implementation
It is integrated in many computer algebra systems
(e.g., MAPLE, SAGE, CGAL,. . .).
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The Descartes Method

Descartes’ Rule of Signs for Intervals
For an interval I = (a,b) and n := deg f , let

fI(x) = (x + 1)n · f
(

ax + b
x + 1

)
=

n∑
i=0

cix i

and v := var(f , I) the number of sign variations in (c0, . . . , cn).
Then, for the number m of real roots in I, it holds that

m ≤ v , and m ≡ v mod 2.
In particular, v ≤ 1 implies m = v .

Example: f (x) = x3 − 2x2 − x + 1 and I = (1/2,4).

Then, fI(x) = +(1/8)x3-(15/2)x2-(43/2)x+29, and thus v = 2.

⇒ f has 0 or 2 real roots in I.
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Some Important Properties

Sign variation diminishing property: For any two disjoint
intervals I1, I2 ⊂ I, we have

var(f , I) ≥ var(f , I1) + var(f , I2)

Generalization of the One- and Two-Circle Theorems:
[Obreshkoff 1963]

p
k+2

p
n+2-k

Ln-k

A k

a b

Let I = (a,b) be an interval, then

# roots in Ln−k ≥ k ⇒ var(f , I) ≥ k

# roots in Ak ≤ k ⇒ var(f , I) ≤ k
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Let I = (a,b) be an interval, then

var(f , I) ≥ # roots in Ln

var(f , I) ≤ # roots in An

We denote Ln and An the Obresh-
koff Lens and the Obreshkoff Area
of I, respectively.
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The Descartes Method
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The Descartes Method
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The Descartes Method

v = 9 > m = number of real roots
m is odd 

_ 
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The Descartes Method
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The Descartes Method
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The Descartes Method
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The Descartes Method
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The Descartes Method
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The Descartes Method

2 0

Computing Real Roots of Real Polynomials Michael Sagraloff 20.11.2013 5



The Descartes Method
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The Descartes Method
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Analysis of the Descartes Method
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Polynomial f of degree n with inte-
ger coefficients of bitsize ≤ L:

Distance between roots:
2−Õ(nL)
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[Eigenwillig et al. 2006]
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fI(x) has bitsize Õ(n2L),
computational cost at each
node: Õ(n3L)
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fI(x) has bitsize Õ(n2L),
computational cost at each
node: Õ(n3L)
Total cost: Õ(n4L2)
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[Eigenwillig et al. 2006]

fI(x) has bitsize Õ(n2L),
computational cost at each
node: Õ(n3L)
Total cost: Õ(n4L2)

Precision n2L is needless! Approximate but certified
computation with precision nL suffices. ⇒ total cost Õ(n3L2)
(one of the reasons why MAPLE’s "solve" is so fast!)

[Rouillier, Zimmermann 2004], [S. 2010]
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Can we improve upon bisection?
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We denote a node I in the subdivi-
sion tree T (starting internal I0)

a milestone if I = I0, or each
child of I counts less sign
variations than I,
terminal if var(f , I) ≤ 1, and
ordinary, otherwise.

n′ := # of milestones ≤ var(f , I0) ≤ n,

(
∑

I var(f , I)−#{I : var(f , I) > 0} is
non-negative and decreases by at
least one at each milestone.)
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Consider the subtree T ′ of T ob-
tained from removing the terminal
nodes of T . T ′ partitions into

milestones J1, . . . , Jn′ , and
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T4
T5

Consider the subtree T ′ of T ob-
tained from removing the terminal
nodes of T . T ′ partitions into

milestones J1, . . . , Jn′ , and
chains Ti of ordinary nodes
connecting the milestone Ji with
a unique Jk ⊃ Ji

|T | = O(|T ′|) = O(n′)+O(
∑

i

|Ti |)

For the bisection strategy, some of
the chains Ti may have length nL
(e.g., Mignotte polynomial).
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Idea: Combine Descartes and Newton iteration
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O(log(nL)) Newton iteration for multiple
roots (cluster of k roots behaves
similarly as a k -fold root)
Bisection only if Newton "fails"
Similar subdivision strategy as
in Abbott’s QIR method to
further refine isolating intervals.

[Abbott 2006],[Kerber and S. 2011]

Quadratic convergence except
for O(log(nL)) many in each
chain
Tree size reduces by factor L
treesize is only logarithmic for
sparse polynomials!
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Newton Iteration

Let ξ be a k -fold root of f .
If x0 is sufficiently close to ξ (compared to the remaining roots
of f ), then the sequence

xi := xi−1 − k · f (xi−1)

f ′(xi−1)

converges quadratically to ξ.
Applies also to a cluster C of k nearby roots at ξ
Cluster must be well separated from the remaining roots
xi must be separated from the cluster

Algorithmic Problem
How can we test in our subdivision algorithm whether such a
situation is given?
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Algorithm NEWDSC: A Trial and Error Approach

For a given f =
∑n

i=0 aix i ∈ Z[x ], |ai | < 2L, I0 := (−2L+1,2L+1)
contains all real roots of f . Let NI0 := 4, A := {(I0,NI0)}, O := ∅.
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Algorithm NEWDSC: A Trial and Error Approach

In each iteration, pick some (I,NI) ∈ A (and remove it from A)
If v := var(f , I) = 0, do nothing. If v = 1, add I to O. If v > 1:
Determine a k∗ ∈ {1, . . . ,n} such that if there exists a cluster
of k roots, then k∗ = k : Use the fact that, in the latter case,
t − k · f (t)

f ′(t) ≈ t ′ − k · f (t ′)
f ′(t ′) for most pairs of points t , t ′ ∈ I.

v=var(f,I)=2

a b

N  =16I
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Algorithm NEWDSC: A Trial and Error Approach

(Conceptually) subdivide I into NI equally sized subintervals
I′ = (a + ` · w(I)

NI
,a + (`+ 1) · w(I)

NI
)

a b
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Algorithm NEWDSC: A Trial and Error Approach

Consider well distributed sample points t1, t2, t3 ∈ I

a bt t t1 2 3
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Algorithm NEWDSC: A Trial and Error Approach

Consider well distributed sample points t1, t2, t3 ∈ I

Compute λi := ti − k∗ · f (ti )
f ′(ti )

a bt1 l1
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Algorithm NEWDSC: A Trial and Error Approach

Consider well distributed sample points t1, t2, t3 ∈ I

Compute λi := ti − k∗ · f (ti )
f ′(ti )

Determine corresponding subinterval I′i = (a′i ,b
′
i ) (if existent)

that contains λi

a bl1

Computing Real Roots of Real Polynomials Michael Sagraloff 20.11.2013 10



Algorithm NEWDSC: A Trial and Error Approach

Let vi,` := var(f , (a,a′i)) and vi,r := var(f , (b′i ,b)).
If there exists an i with vi,` = vi,r = 0, add (I′i ,NI′i

) := (I′i ,N
2
I )

to A
(success case)

a bl1var=0 var=0
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Algorithm NEWDSC: A Trial and Error Approach

Otherwise,. . .

a b
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Algorithm NEWDSC: A Trial and Error Approach

Otherwise, we fall back to bisection, that is, we add
((a,mid(I)),max(4,

√
NI)) and ((mid(I),b),max(4,

√
NI)) to A

(failure case).

a b
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Exact vs. Approximate Computation

Above description of the algorithm assumes exact arithmetic:
applies only to rational input polynomials
bit complexity of Õ(n3L); amortized cost per node is Õ(n2L)

[S. 2012]

extension to polynomials with arbitrary real coefficients that
can only be approximated
precision demand?

Solution:
computation of v := var(f , I) for polynomials with approximate
coefficients
For the special cases v = 0 and v = 1, the precision demand
ρ is related to the absolute values of f at the end points of I:

ρ = O(n+log ‖f‖∞+n log max(|a|, |b|)+log max(|f (a)|−1, |f (b)|−1))
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Exact vs. Approximate Computation

comparable bound for the Newton step; precision related to
the values |f (ti)|
Idea: Choose subdivision points, where |f | becomes large;
instead of ti , consider approximations t̃i , where |f | becomes
large
Main Tool: Approximate (Multipoint) Evaluation
Cost for processing an interval I at a node can be mapped to
an arbitrary root zi contained in the one-circle region of I:

Õ(n(n + log ‖f‖∞ + n log |zi |+ log |f ′(zi)
−1|))

each root is considered only a logarithmic number of times

Computing Real Roots of Real Polynomials Michael Sagraloff 20.11.2013 12



Results

Main Result: Let f (x) = anxn + . . .+ a1x1 + a0 ∈ R[x ] be a
real, square-free polynomial of degree n with 1/4 ≤ an ≤ 1. We
can determines isolating intervals for all real roots of f of size
less than 2−κ with a number of bit operations bounded by

Õ(n(n2 + n log Mea(f ) + log |Disc(f )−1|) + nκ).

The coefficients of f must be approximated with absolute error

Õ(n + log ‖f‖∞ + max
i

(n log |zi |+ log |f ′(zi)
−1|) + κ),

where z1 to zn are the roots of f ,
Mea(f ) := |an| ·

∏n
i=1 max(1, |zi |) denotes the Mahler Measure

of f , Disc(f ) is the discriminant of f , and f ′ is the derivative of f .
[S. and Mehlhorn 2013]
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Results

For polynomials with integer coefficients, the bound writes as
Õ(n3 + n2L + nκ)
matches complexity of the best known method due to Pan
[Pan 2002]

much simpler and more practical
can be used to compute the real roots in a given interval only;
no need to compute all complex roots
Improvement of the bounds for isolating the roots of
polynomials with algebraic coefficients
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Outlook

Efficient implementation based on the current version of RS

(together with F. Rouillier)
Optimality of the bound?
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Thank you very much for
your attention!
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