Computing Real Roots of Real Polynomials

Michael Sagraloff (joined work with Kurt Mehlhorn)

Isolating Real Roots using the Descartes Method

Problem

Given a (square-free) polynomial $f \in \mathbb{R}[x]$, compute disjoint intervals I_1, \ldots, I_m (rational endpoints) such that each I_j contains exactly one root and their union covers all real roots.

The Descartes Method

Recursive interval bisection using Descartes' Rule of Signs to test for roots.

- Easy to understand and to implement
- Performs very well in practice
- Well suited for exact and complete implementation
- It is integrated in many computer algebra systems (e.g., MAPLE, SAGE, CGAL,...).

Descartes' Rule of Signs for Intervals

For an interval I = (a, b) and $n := \deg f$, let

$$f_l(x) = (x+1)^n \cdot f\left(\frac{ax+b}{x+1}\right) = \sum_{i=0}^n c_i x^i$$

and v := var(f, I) the number of sign variations in (c_0, \ldots, c_n) . Then, for the number *m* of real roots in *I*, it holds that

• $m \leq v$, and $m \equiv v \mod 2$.

• In particular, $v \leq 1$ implies m = v.

planck institut

Example: $f(x) = x^3 - 2x^2 - x + 1$ and I = (1/2, 4). Then, $f_l(x) = +(1/8)x^3 - (15/2)x^2 - (43/2)x + 29$, and thus v = 2. $\Rightarrow f$ has 0 or 2 real roots in *I*.

Descartes' Rule of Signs for Intervals

For an interval I = (a, b) and $n := \deg f$, let

$$f_l(x) = (x+1)^n \cdot f\left(\frac{ax+b}{x+1}\right) = \sum_{i=0}^n c_i x^i$$

and v := var(f, I) the number of sign variations in (c_0, \ldots, c_n) . Then, for the number *m* of real roots in *I*, it holds that

• $m \leq v$, and $m \equiv v \mod 2$.

• In particular, $v \leq 1$ implies m = v.

planck institut

Example: $f(x) = x^3 - 2x^2 - x + 1$ and I = (1/2, 4). Then, $f_I(x) = +(1/8)x^3 - (15/2)x^2 - (43/2)x + 29$, and thus v = 2. $\Rightarrow f$ has 0 or 2 real roots in *I*.

Some Important Properties

Sign variation diminishing property: For any two disjoint intervals $I_1, I_2 \subset I$, we have

 $\operatorname{var}(f, I) \geq \operatorname{var}(f, I_1) + \operatorname{var}(f, I_2)$

Generalization of the One- and Two-Circle Theorems:

[Obreshkoff 1963]

planck institut

Let I = (a, b) be an interval, then

roots in $L_{n-k} \ge k \Rightarrow var(f, I) \ge k$

roots in $A_k \leq k \Rightarrow var(f, I) \leq k$

Some Important Properties

Sign variation diminishing property: For any two disjoint intervals $I_1, I_2 \subset I$, we have

 $\operatorname{var}(f, I) \geq \operatorname{var}(f, I_1) + \operatorname{var}(f, I_2)$

Generalization of the One- and Two-Circle Theorems:

[Obreshkoff 1963]

planck institut

Let I = (a, b) be an interval, then

 $var(f, I) \ge \#$ roots in L_n

 $var(f, I) \le \#$ roots in A_n

We denote L_n and A_n the Obreshkoff Lens and the Obreshkoff Area of I, respectively.

Polynomial *f* of degree *n* with integer coefficients of bitsize $\leq L$:

Distance between roots:
 2^{-Õ(nL)}

Polynomial *f* of degree *n* with integer coefficients of bitsize $\leq L$:

- Distance between roots:
 2^{-Õ(nL)}
- Only few roots have small distance to each other

[Eigenwillig et al. 2006]

Polynomial *f* of degree *n* with integer coefficients of bitsize $\leq L$:

- Distance between roots:
 2^{-Õ(nL)}
- Only few roots have small distance to each other

[Eigenwillig et al. 2006]

f_l(x) has bitsize Õ(n²L), computational cost at each node: Õ(n³L)

olanek institut

Polynomial *f* of degree *n* with integer coefficients of bitsize $\leq L$:

- Distance between roots: 2^{-Õ(nL)}
- Only few roots have small distance to each other

[Eigenwillig et al. 2006]

- f_l(x) has bitsize Õ(n²L), computational cost at each node: Õ(n³L)
- Total cost: Õ(n⁴L²)

planck institut

Polynomial *f* of degree *n* with integer coefficients of bitsize $\leq L$:

- Distance between roots:
 2^{-Õ(nL)}
- Only few roots have small distance to each other

[Eigenwillig et al. 2006]

- *f*_l(x) has bitsize Õ(n²L), computational cost at each node: Õ(n³L)
- Total cost: Õ(n⁴L²)

Precision n²L is needless! Approximate but certified computation with precision **nL** suffices. \Rightarrow total cost $\tilde{O}(n^3L^2)$ (one of the reasons why MAPLE's "solve" is so fast!)

[Rouillier, Zimmermann 2004], [S. 2010]

lanek institut

We denote a node *I* in the subdivision tree T (starting internal I_0)

- a **milestone** if $I = I_0$, or each child of *I* counts less sign variations than *I*,
- terminal if $var(f, I) \leq 1$, and
- ordinary, otherwise.

n' := # of milestones $\leq var(f, I_0) \leq n$,

 $(\sum_{I} \operatorname{var}(f, I) - \#\{I : \operatorname{var}(f, I) > 0\}$ is non-negative and decreases by at least one at each milestone.)

Consider the subtree \mathcal{T}' of \mathcal{T} obtained from removing the terminal nodes of \mathcal{T} . \mathcal{T}' partitions into

• milestones $J_1, \ldots, J_{n'}$, and

danek institut

Consider the subtree \mathcal{T}' of \mathcal{T} obtained from removing the terminal nodes of \mathcal{T} . \mathcal{T}' partitions into

- milestones $J_1, \ldots, J_{n'}$, and
- chains *T_i* of ordinary nodes connecting the milestone *J_i* with a unique *J_k* ⊃ *J_i*

$$|\mathcal{T}| = O(|\mathcal{T}'|) = O(n') + O(\sum_i |T_i|)$$

For the bisection strategy, some of the chains T_i may have length nL (e.g., Mignotte polynomial).

Idea: Combine Descartes and Newton iteration

planck institut

- Newton iteration for multiple roots (cluster of k roots behaves similarly as a k-fold root)
- Bisection only if Newton "fails"
- Similar subdivision strategy as in Abbott's QIR method to further refine isolating intervals.

[Abbott 2006],[Kerber and S. 2011]

- Quadratic convergence except for O(log(nL)) many in each chain
- Tree size reduces by factor L
- treesize is only logarithmic for sparse polynomials!

Newton Iteration

Let ξ be a *k*-fold root of *f*.

If x₀ is sufficiently close to ξ (compared to the remaining roots of *f*), then the sequence

$$x_i := x_{i-1} - k \cdot \frac{f(x_{i-1})}{f'(x_{i-1})}$$

converges quadratically to ξ .

- Applies also to a cluster C of k nearby roots at ξ
- Cluster must be well separated from the remaining roots
- x_i must be separated from the cluster

Algorithmic Problem

How can we test in our subdivision algorithm whether such a situation is given?

For a given $f = \sum_{i=0}^{n} a_i x^i \in \mathbb{Z}[x], |a_i| < 2^L, I_0 := (-2^{L+1}, 2^{L+1})$ contains all real roots of *f*. Let $N_{I_0} := 4$, $\mathcal{A} := \{(I_0, N_{I_0})\}, \mathcal{O} := \emptyset$.

In each iteration, pick some $(I, N_I) \in \mathcal{A}$ (and remove it from \mathcal{A})

- If v := var(f, I) = 0, do nothing. If v = 1, add I to O. If v > 1:
- Determine a $k^* \in \{1, ..., n\}$ such that if there exists a cluster of k roots, then $k^* = k$: Use the fact that, in the latter case, $t k \cdot \frac{f(t)}{f'(t)} \approx t' k \cdot \frac{f(t')}{f'(t')}$ for most pairs of points $t, t' \in I$.

(Conceptually) subdivide *I* into N_I equally sized subintervals $I' = (a + \ell \cdot \frac{w(I)}{N_I}, a + (\ell + 1) \cdot \frac{w(I)}{N_I})$

• Consider well distributed sample points $t_1, t_2, t_3 \in I$

• Consider well distributed sample points $t_1, t_2, t_3 \in I$

• Compute
$$\lambda_i := t_i - k^* \cdot \frac{f(t_i)}{f'(t_i)}$$

- Consider well distributed sample points $t_1, t_2, t_3 \in I$
- Compute $\lambda_i := t_i k^* \cdot \frac{f(t_i)}{f'(t_i)}$
- Determine corresponding subinterval *l'_i* = (*a'_i*, *b'_i*) (if existent) that contains λ_i

- Let $v_{i,\ell} := var(f, (a, a'_i))$ and $v_{i,r} := var(f, (b'_i, b))$.
- If there exists an *i* with $v_{i,\ell} = v_{i,r} = 0$, add $(I'_i, N_{I'_i}) := (I'_i, N_I^2)$ to A

Otherwise,...

Otherwise, we fall back to bisection, that is, we add $((a, mid(I)), max(4, \sqrt{N_I}))$ and $((mid(I), b), max(4, \sqrt{N_I}))$ to \mathcal{A} (failure case).

Exact vs. Approximate Computation

Above description of the algorithm assumes exact arithmetic:

- applies only to rational input polynomials
- bit complexity of $\tilde{O}(n^3L)$; amortized cost per node is $\tilde{O}(n^2L)$

[S. 2012]

- extension to polynomials with arbitrary real coefficients that can only be approximated
- precision demand?

Solution:

- computation of v := var(f, l) for polynomials with approximate coefficients
- For the special cases v = 0 and v = 1, the precision demand ρ is related to the absolute values of *f* at the end points of *I*:

 $\rho = O(n + \log ||f||_{\infty} + n \log \max(|a|, |b|) + \log \max(|f(a)|^{-1}, |f(b)|^{-1}))$

Exact vs. Approximate Computation

- comparable bound for the Newton step; precision related to the values |f(t_i)|
- Idea: Choose subdivision points, where |f| becomes large; instead of t_i , consider approximations \tilde{t}_i , where |f| becomes large
- Main Tool: Approximate (Multipoint) Evaluation

nlanek institut

 Cost for processing an interval / at a node can be mapped to an arbitrary root z_i contained in the one-circle region of /:

$$\tilde{O}(n(n + \log ||f||_{\infty} + n \log |z_i| + \log |f'(z_i)^{-1}|))$$

each root is considered only a logarithmic number of times

Results

Main Result: Let $f(x) = a_n x^n + \ldots + a_1 x^1 + a_0 \in \mathbb{R}[x]$ be a real, square-free polynomial of degree *n* with $1/4 \le a_n \le 1$. We can determines isolating intervals for all real roots of *f* of size less than $2^{-\kappa}$ with a number of bit operations bounded by

$$\tilde{O}(n(n^2 + n \log \operatorname{Mea}(f) + \log |\operatorname{Disc}(f)^{-1}|) + n\kappa).$$

The coefficients of f must be approximated with absolute error

$$\tilde{O}(n + \log \|f\|_{\infty} + \max_{i}(n \log |z_i| + \log |f'(z_i)^{-1}|) + \kappa),$$

where z_1 to z_n are the roots of f, $Mea(f) := |a_n| \cdot \prod_{i=1}^n max(1, |z_i|)$ denotes the *Mahler Measure* of f, Disc(f) is the *discriminant* of f, and f' is the derivative of f. [S. and Mehlhorn 2013]

- For polynomials with integer coefficients, the bound writes as $\tilde{O}(n^3 + n^2L + n\kappa)$
- matches complexity of the best known method due to Pan [Pan 2002]
- much simpler and more practical
- can be used to compute the real roots in a given interval only; no need to compute all complex roots
- Improvement of the bounds for isolating the roots of polynomials with algebraic coefficients

- Efficient implementation based on the current version of Rs (together with F. Rouillier)
- Optimality of the bound?

- Efficient implementation based on the current version of Rs (together with F. Rouillier)
- Optimality of the bound?

Thank you very much for your attention!

