
Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Numerical reproducibility in HPC:
issues in floating-point arithmetic

and in interval arithmetic

Nathalie Revol et Philippe Théveny
INRIA et ENS de Lyon

LIP (UMR 5668 CNRS - ENS de Lyon - INRIA - UCBL) - ENS de Lyon

Université de Lyon

RAIM

November 20, 2013

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

No numerical reproducibility
(Diethelm 2012)

JANUARY/FEBRUARY 2012 67

clearly visible. In particular, the maximal values
vary more than the minimal values. The locations
where these extremal values arise on the blank are
exempli! ed in Figure 4 by a comparison of only
two program runs. The ! gure shows the same
section of the blank in both cases, and it’s evident
that not only the extremal value itself changes but
also its location.

A detailed investigation of the program source
and the intermediate results revealed that the rea-
son for the differences that we observed was the
nondeterministic behavior of the Pardiso sub-
routine10 that was linked to the program code as
a component of the Intel Math Kernel Library
(http://software.intel.com/en-us/intel-mkl). Pard-
iso is a parallel direct (that is, noniterative) solver
for sparse linear systems that, due to its reliability
and ef! ciency, is popular and frequently used. In
particular, it’s a natural subroutine for a ! nite ele-
ment program such as Indeed, where many such
systems must be solved.

In a complex simulation, such a situation is
common. The required code is so voluminous and
consists of subroutines from so many different ar-
eas that most researchers or research teams don’t

have enough time and/or specialized know-how
to develop and implement the complete code on
their own. Thus, users typically have to rely on
more or less well-documented library routines. Of
course, end users typical don’t have any in" uence
on the way in which these routines were written,
and so in a case like this, the reproducibility is at
least doubtful. Therefore, to be positively sure
about reproducibility, a close cooperation with the
developers of the employed libraries is essential.

I’ll now discuss how such effects can arise and
what can be done—primarily by the researchers
who write the subroutine libraries—to avoid them.

The Mathematical Background
To illustrate the mathematical background of
the nonreproducibility described earlier, it’s not
necessary to consider an extremely complicated
high-performance algorithm. Rather, it’s suf-
! cient to look at a completely obvious approach
for the solution of a simple problem that, strictly
speaking, can be interpreted as an approximation
method only because it’s executed on a computer
in ! nite precision arithmetic. As will be immedi-
ately clear, the phenomenon under investigation

Table 1. Computed extrema of the sheet thickness change.

Description of the simulation
(no. of processors)

Minimal value of the sheet
thickness change (%)

Maximal value of the sheet
thickness change (%)

1 −29.21 +9.54

2 −29.34 +9.14

3 −29.04 +9.02

4 (1st attempt) −29.04 +8.98

4 (2nd attempt) −29.09 +8.96

Figure 4. Location of the computed maxima of the sheet thickness change. (a) The simulation with one
processor. (b) The second run of the simulation with four processors. The darker the element is colored,
the larger the corresponding sheet-thickness change. Elements colored in white have a sheet thickness
change of less than 8.5 percent.

Max = 9.54

Max = 8.96

(a) (b)

CISE-14-1-Diet.indd 67 12/21/11 11:13 AM

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

No numerical reproducibility
(He and Ding 2001)

264 he and ding

Table 1. Results of the summation in different natural orders with different
methods in double precision

Order Result

Longitude first 34.414768218994141
Reverse longitude first 32.302734375
Latitude first 0.67326545715332031
Reverse latitude first 0.734375
Longitude first SCS 0.3823695182800293
Longitude first DCS 0.3882288932800293
Latitude first SCS 0.37443733215332031
Latitude first DCS 0.32560920715332031

On a distributed memory computer platform, the 2D SSH array is decomposed
into many subdomains among multiple processors. On different number of proces-
sors, the order of summation is not guaranteed, and the results are not reproducible!

The origin of the rounding error is due to finite representation of a floating point
number. A simple example explains the idea best. In double precision, the following
Fortran statement S = 1!25 × 1020 + 555!55 − 1!25 × 1020 will get S = 0!0, instead
of S = 555!55. The reason is that when compared to 1!25× 1020, 555!55 is negligibly
small, or non-representable. In hardware, 555!55 is simply right-shifted out of CPU
registers when the first addition is performed. So the intermediate result of the first
addition is 1!25× 1020, which is then cancelled exactly in the subtraction step.

The sea surface height data is one of the worst cases and therefore serves as a
good clear test case. For most variables, this dependency on summary ordering is
less pronounced. However, this error could propagate to higher digits in the fol-
lowing iterations. Our goal is to find an accurate summation scheme that minimizes
this rounding error.

3. Fixed-point arithmetic

The first method we investigate is a fixed point summation without loss of preci-
sion. It is a simple method and can be easily implemented (codes could be down-
loaded from our web site [14]). We wrote a code to first convert double precision
floating point numbers of a global array into an array of integers, a db2int() func-
tion. Depending upon the dynamical range (maximum and minimum) and precision
required, the integer representation chooses a proper fixed point (a scale factor) and
one or a few integers to represent each floating point numbers.

These integers are then summed up using standard integer arithmetic, (and sum
across the multiple processors using MPI REDUCE with MPI INTEGER data
type) and are finally converted back to double precision numbers, rounding off all
lower bits which are non-representable in double precision, by using the int2db()

function.
This method is applied to the 3 number addition example and the correct result

S = 555!55 is obtained. We applied this method to the SSH data discussed above,

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Agenda

Numerical reproducibility issues in floating-point arithmetic
Why?
Example and solutions for the summation
Numerical reproducibility

Numerical reproducibility issues in interval arithmetic
Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Conclusions

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Agenda

Numerical reproducibility issues in floating-point arithmetic
Why?
Example and solutions for the summation
Numerical reproducibility

Numerical reproducibility issues in interval arithmetic
Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Conclusions

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

No numerical reproducibility: why?

Consider the following program, whatever the language

float a,b,c,d,x;

x = a+b+c+d;

Two questions:

I What precision will be used for the intermediate results?

I In which order will the three additions be executed?

Here we should remind that FP addition is not
associative: consider 1 + 2100 − 2100.

Fortran, C and Java have completely different answers.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

No numerical reproducibility: why?

Consider the following program, whatever the language

float a,b,c,d,x;

x = a+b+c+d;

Two questions:

I What precision will be used for the intermediate results?

I In which order will the three additions be executed?
Here we should remind that FP addition is not
associative: consider 1 + 2100 − 2100.

Fortran, C and Java have completely different answers.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

No numerical reproducibility: why?

Consider the following program, whatever the language

float a,b,c,d,x;

x = a+b+c+d;

Two questions:

I What precision will be used for the intermediate results?

I In which order will the three additions be executed?
Here we should remind that FP addition is not
associative: consider 1 + 2100 − 2100.

Fortran, C and Java have completely different answers.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

No numerical reproducibility: change of precision

float a,b,c,d,x;

x = a+b+c+d;

Two questions:
I What precision will be used for the intermediate results?

I Bottom up precision: (here all float)
I Use the maximum precision available which is no slower
I Is the precision fixed by the language, or is the compiler free to

choose?

I In which order will the three additions be executed?

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

No numerical reproducibility: change of order

float a,b,c,d,x;

x = a+b+c+d;

Two questions:

I What precision will be used for the intermediate results?
I In which order will the three additions be executed?

I With two FPUs (dual FMA, or SSE2, ...), (a+b)+(c +d)

faster than ((a+b)+c)+d.
I If a, c, d are constants, (a+c+d) + b faster.
I Is the order fixed by the language, or is the compiler free to

choose?
I Similar issue: should multiply-additions be fused in FMA?

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Example of the summation

The floating-point addition is not associative.

Problem of numerical reproducibility with multicore or HPC
computations:
as the summation

∑n
i=1 ai on a multicore is not done in a

deterministic order,

I depending on the number of threads,

I depending on the state of the execution environment (various
loads imply various schedulings),

I depending on the execution order,

the result varies from on execution to the other.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Example of the summation: HPC issues

Problems:

I order of execution: depending on the number of threads, on
the state of the execution environment;

I computing precision: on heterogeneous targets, various
precisions for the registers. . .

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

“Solution” for the summation
(He and Ding 2001, Bailey 2012)

To increase the accuracy on the result, whatever the execution:
increase the computing precision.

I (He and Ding 2001): self-compensated summation and
double-double arithmetic;

I (Bailey 2012): double-double arithmetic.

Accuracy, stability are improved. . .

Reproducibility is still not guaranteed.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

“Solution” for the summation
(He and Ding 2001, Bailey 2012)

To increase the accuracy on the result, whatever the execution:
increase the computing precision.

I (He and Ding 2001): self-compensated summation and
double-double arithmetic;

I (Bailey 2012): double-double arithmetic.

Accuracy, stability are improved. . .
Reproducibility is still not guaranteed.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Solution for the summation
(Rump, Ogita and Oishi 2008), (Nguyen and Demmel 2013)

Rump, Ogita and Oishi 2008:
Provide the correct rounding of the exact result: reproducible
result.

Nguyen and Demmel 2013:
The result is reproducible: bit-to-bit reproducibility whatever
the execution.

The accuracy is variable. The result is not necessarily the
correctly rounded sum.

Tradeoff between the accuracy of the result and the
execution time.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Solution for the summation
(Rump, Ogita and Oishi 2008), (Nguyen and Demmel 2013)

Rump, Ogita and Oishi 2008:
Provide the correct rounding of the exact result: reproducible
result.

Nguyen and Demmel 2013:
The result is reproducible: bit-to-bit reproducibility whatever
the execution.

The accuracy is variable. The result is not necessarily the
correctly rounded sum.

Tradeoff between the accuracy of the result and the
execution time.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Reproducibility in the MKL of Intel: CNR

MKL: Math Kernel Library, includes the BLAS.
On multicores, the MKL does not produce reproducible results.
.
Thus Intel got bug reports and requests for reproducibility.

CNR: conditional numerical reproducibility by MKL 11.0:
if the processors, the OS, the number of threads and the memory
alignment are preserved, then MKL guarantees numerical
reproducibility.
Non-efficient, non-user-friendly, non-portable solution.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Why?
Example and solutions for the summation
Numerical reproducibility

Numerical reproducibility?

Definition?

I Numerical reproducibility = best possible result = correct
rounding of the exact result?

I Numerical reproducibility = getting the same string of bits
whatever the run?

New light on numerical reproducibility:

I reproducibility and correct rounding are separate notions

I a hierarchy of reproducibility levels exists: accuracy vs
execution time.

Cf. Dongarra: get numerical quality rather than bit-to-bit, use the
least needed computing precision.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Agenda

Numerical reproducibility issues in floating-point arithmetic
Why?
Example and solutions for the summation
Numerical reproducibility

Numerical reproducibility issues in interval arithmetic
Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Conclusions

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:
(or “Thou shalt not lie”):
the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.
Initially: introduced to take into account roundoff errors (Moore
1966)
and also uncertainties (on the physical data. . .).
Later: computations “in the large”, computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or
guaranteed, or certified) computing,
that are suited for interval arithmetic,
i.e. different from the algorithms from classical numerical analysis.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Definitions: operations

x � y = Hull{x � y : x ∈ x, y ∈ y}
Arithmetic and algebraic operations: use the monotonicity

[x , x] +
[
y , y

]
=

[
x + y , x + y

]
[x , x]−

[
y , y

]
=

[
x − y , x − y

]
[x , x]×

[
y , y

]
=

[
min(x × y , x × y , x × y , x × y),max(ibid.)

]
[x , x]2 =

[
min(x2, x2),max(x2, x2)

]
if 0 6∈ [x , x][

0,max(x2, x2)
]

otherwise

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Interval arithmetic:
implementation using floating-point arithmetic

Implementation using floating-point arithmetic:
use directed rounding modes (cf. IEEE 754 standard)√

[2, 3] = [5
√

2,4
√

3]

Advantage: every result is guaranteed, in the sense that the
exact, unknown result, belongs to t he computed interval result.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Operations

Algebraic properties: associativity, commutativity hold, some are
lost:

I subtraction is not the inverse of addition, in particular
x− x 6= [0]

I division is not the inverse of multiplication

I squaring is tighter than multiplication by oneself

I multiplication is only sub-distributive wrt addition

I with floating-point implementation, operations are not
associative either

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Definitions: intervals, vectors, matrices
Objects:

I intervals of real numbers = closed connected sets of R
I interval for π: [3.14159, 3.14160]
I data d measured with an absolute error less than ±ε:

[d − ε, d + ε]

I interval vector: components = intervals; also called box

5

4

0 2

0 2
4

4.5

0 2
−6

−5

[0 ; 2]
[0 ; 2]

[4 ; 5]

[0;2]
[4 ; 4.5]
[−6 ; −5]

I interval matrix: components = intervals.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Inclusion property

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:
aka ”Inclusion property”
(or “Thou shalt not lie”):
the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Optimistic point of view

Whatever the result, the inclusion property is satisfied:
interval arithmetic is not perturbed by numerical
reproducibility issues.

Even better, as each different result encloses the exact result, a
more accurate result can be obtained by intersecting all computed
results:
interval arithmetic benefits from the lack of numerical
reproducibility.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Optimistic point of view

Whatever the result, the inclusion property is satisfied:
interval arithmetic is not perturbed by numerical
reproducibility issues.

Even better, as each different result encloses the exact result, a
more accurate result can be obtained by intersecting all computed
results:
interval arithmetic benefits from the lack of numerical
reproducibility.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Pragmatic point of view

Reproducibility is important for

I debugging purposes,

I testing purposes.

What may hinder reproducibility?

I computing precision,

I order of the operations, expressions,

I rounding modes.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Pragmatic point of view

Reproducibility is important for

I debugging purposes,

I testing purposes.

What may hinder reproducibility?

I computing precision,

I order of the operations, expressions,

I rounding modes.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Influence of the computing precision

Influence on an interval computation: in practice,

I use the midpoint-radius representation for thin intervals: the
radius accounts for roundoff errors,

I use iterative refinement to reduce the width,

I use higher precision for critical intermediate computations
(residual) to hide the effect of the computing precision,

and get w(x̂)− w(x) ' 2−p|x|, i.e. the best possible result.

Examples: linear systems solving, Newton iteration.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Influence of the expression

Using floating-point arithmetic: the problem comes from the
non-associativity of the operations

(a1 + a2) + (a3 + a4) 6= ((a1 + a2) + a3) + a4.

Using interval arithmetic: the expression influences the result
because operations are neither distributive nor reciprocal (+ of −,
× of /).

Using interval arithmetic implemented with floating-point
arithmetic: because operations are neither distributive nor
reciprocal (+ of −, × of /) nor associative: problems cumulate.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Influence of the expression: example

[1, 1] + [2100, 2100]− [2100, 2100]?

With these parentheses:

([1, 1]+[2100, 2100])−[2100, 2100] = [2100, succ(2100)]−[2100, 2100] = [0,ulp(2100)].

With those parentheses:

[1, 1] + ([2100, 2100]− [2100, 2100]) = [1, 1] + [0, 0] = [1, 1].

Both include the results, one is more accurate than the other. . .

Moral lesson: interval results are always guaranteed to include the
exact result, whatever the chosen expression. However their
accuracy strongly depends on the chosen expression, on the order
of operations.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

More on the influence of the order of the operations
Beware ”hidden” assumptions on the order of the operations.

Example: interval matrix product.
In order to save 1 or 2 calls to gemm (BLAS matrix product),
Rump’s algorithm (2012) assumes that Am · Bm and |Am| · |Bm|
are computed in the same order.

BLAS do not guarantee anything on the order of operations nor on
the reproducibility of this order from one product to the next.

Moral lesson: interval results could depend on the order of
operations,
interval results could be wrong if they relied too much on the order
of operations.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Circumventing these difficulties
(Théveny 2013)

To ensure that Am · Bm and |Am| · |Bm| are computed in the same
order:

I do not use gemm;

I compute simultaneously Am · Bm and |Am| · |Bm|:
reduce the memory transfers;

I to get performances:
I optimize the use of the cache (L1);
I manually vectorize with SSE2 instructions.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Influence of the order of operations

Other important operations in interval arithmetic may also be
sensitive to the order:

bisection, working list of intervals to process later
in global optimization.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Influence of the order of operations

Other important operations in interval arithmetic may also be
sensitive to the order:

bisection, working list of intervals to process later
in global optimization.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Rounding modes

Implementation using floating-point arithmetic:
use directed rounding modes (cf. IEEE 754 standard)√

[2, 3] = [RD(
√

2),RU(
√

3)].

The implementation of interval arithmetic using floating-point
arithmetic is based on setting properly the rounding modes.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Rounding modes

Are rounding modes respected?

I by the compiler?
I by the libraries?

I Undocumented for the classical BLAS,
I experimentally: no (Lauter and Ménissier-Morain 2012),
I for fast methods such as Strassen’s matrix multiplication: no,
I for specific libraries such as xBLAS (extended BLAS that are

based on error free transforms) (Li, Demmel, Bailey et al.
2008): impossible;

I by the execution environment? Undocumented, or explicitely
documented as non supported (for OpenMP).

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Solution
(Revol, Makino and Berz 2003, Rump 2012)

Bound each rounding error by a quantity that is computable
using floating-point arithmetic:

I multiply by (1 + 2u) in rounding-to-nearest;

I multiply by (1 + 4u) in directed rounding modes or in
unknown rounding modes;

when adding or multiplying nonnegative quantities.

Limits:
this does not work with fast algorithms, e.g. for fast matrix
multiplications (different numbers of operations, varying
monotony).

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

HPC issues

Specific issues:

I order of operations: no specified order in parallel evaluations

I computing precision: problem on distributed, heterogeneous
environments (not – yet – our problem)

I rounding modes:
I is the rounding mode local to each thread or global?
I is the rounding mode respected by the thread or set to a

default value?
I are rounding modes saved and restored at context switches

during a multithreaded computation?

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Agenda

Numerical reproducibility issues in floating-point arithmetic
Why?
Example and solutions for the summation
Numerical reproducibility

Numerical reproducibility issues in interval arithmetic
Introduction to interval arithmetic
Need of reproducibility
Computing precision
Order of the operations
Rounding modes
HPC issues

Conclusions

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Conclusion
New light on numerical reproducibility:

I reproducibility and correct rounding are separate notions
I a hierarchy of reproducibility levels exists: accuracy vs

execution time.

Interval equivalent of the numerical reproducibility?
I the inclusion property (the guarantee that the computed

result contains the exact result) must be preserved,
I preserved inclusion property and correct rounding of the exact

result are separate notions,
I to guarantee the inclusion property, brute-force bounds on

roundoffs errors can be used,
I a hierarchy of guarantee levels exists: accuracy vs execution

time.
Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Conclusion: intervals and reproducibility

Interval computations are:

I apparently, safe against the lack of reproducibility;

I however, sensitive to the respect of the rounding mode and to
floating-point reproducibility;

I adopted methodology:
I firstly, develop interval algorithms that are based on

well-established numerical bricks;
I second, convince developers and vendors of these bricks to

clearly specify their behavior (rounding modes)
I if the second step fails,

I either replicate the work done for the optimization of the
considered numerical bricks;

I or use brute-force methods to compute an upper bound of the
roundoff errors.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

References on interval arithmetic
I R. Moore: Interval Analysis, Prentice Hall, Englewood Cliffs,

1966.
I A. Neumaier: Interval methods for systems of equations, CUP,

1990.
I R. Moore, R.B. Kearfott, M.J. Cloud: Introduction to interval

analysis, SIAM, 2009.
I W. Tucker: Validated Numerics: A Short Introduction to

Rigorous Computations, Princeton University Press, 2011.
I S.M. Rump: Computer-assisted proofs and Self-Validating

Methods, pp. 195-240. Handbook on Accuracy and Reliability
in Scientific Computation (B. Einarsson ed.), SIAM, 2005.

I S.M. Rump: Verification methods: Rigorous results using
floating-point arithmetic, Acta Numerica, vol. 19, pp.
287-449, 2010.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

References on interval arithmetic

I J. Rohn: A Handbook of Results on Interval Linear Problems,
http://www.cs.cas.cz/rohn/handbook 2006.

I E. Hansen and W. Walster: Global optimization using interval
analysis, MIT Press, 2004.

I R.B. Kearfott: Rigorous global search: continuous problems,
Kluwer, 1996.

I V. Kreinovich, A. Lakeyev, J. Rohn, P. Kahl: Computational
Complexity and Feasibility of Data Processing and Interval
Computations, Dordrecht, 1997.

I L.H. Figueiredo, J. Stolfi: Affine arithmetic http://www.ic.

unicamp.br/~stolfi/EXPORT/projects/affine-arith/.

I Taylor models arith.: M. Berz and K. Makino, N. Nedialkov,
M. Neher.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

http://www.cs.cas.cz/rohn/handbook
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/
http://www.ic.unicamp.br/~stolfi/EXPORT/projects/affine-arith/

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Further readings

Numerical Reproducibility and Parallel
Computations: Issues for Interval Algorithms
Nathalie Revol and Philippe Théveny
July 2013
http://hal.inria.fr/hal-00845839/

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

http://hal.inria.fr/hal-00845839/

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Repeatability and reproducibility

Repeatability:
getting the same result (the same bits) from run to run, on the
same machine.

Reproducibility:
getting the same result (the same bits) from run to run, whatever
the machine.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Fortran’s philosophy (1)

Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages – Fortran –
Part 1: Base language

The FORmula TRANslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5./2. is a
mathematical difference, not a computational difference.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 24

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Fortran’s philosophy (2)

Fortran respects mathematics, and only mathematics.

(...) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 25

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Fortran in details (2)

Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alternative
forms that may be used by the processor in the actual evaluation of the
expression. This is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 28

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

The C philosophy

The “C11” standard:
International Standard ISO/IEC ISO/IEC 9899:2011.

Contrary to Fortran, the standard imposes an order of evaluation

Parentheses are always respected,
Otherwise, left to right order with usual priorities
If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

Consequence: little expressions rewriting

Only if the compiler is able to prove that the two expressions always
return the same FP number, including in exceptional cases

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 32

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Obvious impact on performance

Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...
But there is always an option to enable it.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 34

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

The C philosophy (2)

So, perfect determinism wrt order of evaluation

Strangely, intermediate precision is not determined by the
standard: it defines a bottom-up minimum precision, but invites
the compiler to take the largest precision which is larger than this
minimum, and no slower

Idea:

If you wrote float somewhere, you probably did so because you
thought it would be faster than double.
If the compiler gives you long double for the same price,
you won’t complain.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 35

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Drawbacks of C philosophy

Small drawback

Before SSE, float was almost always double or double-extended
With SSE, float should be single precision (2-4× faster)
Or, on a newer PC, the same computation became much less
accurate!

Big drawbacks

The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)
It does so almost randomly (it totally depends on the context)
But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.
Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision
And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 36

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Quickly, Java

Integrist approach to determinism: compile once, run everywhere

float and double only.
Evaluation semantics with fixed order and precision.

⊕ No sort bug.
� Performance impact, but... only on PCs (Sun also sold SPARCs)
� You’ve paid for double-extended processor, and you can’t use it

(because it doesn’t run anywhere)

The great Kahan doesn’t like it.

Many numerical unstabilities are solved by using a larger precision

Look up Why Java hurts everybody everywhere on the Internet

I tend to disagree with him here. We can’t allow the sort bug.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 37

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Quickly, Python

Floating point numbers
These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for
using these is dwarfed by the overhead of using objects in Python, so
there is no reason to complicate the language with two kinds of floating
point numbers.

Florent de Dinechin, projet AriC (ex-Arénaire) De calculer juste à calculer au plus juste 38

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Solution for the summation
(Rump, Ogita and Oishi 2008)

Provide the correct rounding of the exact result: reproducible
result.
Principle:

I align mantissas (as if in fixed-point arithmetic);

I split mantissas into vertical slices, of width small enough to
allow exact summation of a slice into a floating-point number;

I add the leftmost slice;

I as long as it is not possible to round, add one more slice from
the right.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Solutions for the summation
(Nguyen and Demmel 2013)

I Fix in advance the number of slices;

I sum the slices.

The result is reproducible: bit-to-bit reproducibility whatever
the execution.

The accuracy is variable and is determined by the number of
slices. The result is not necessarily the correctly rounded sum.

Tradeoff between the accuracy of the result and the
execution time.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Reproducibility in the MKL of Intel: CNR
(From Intel Developer Zone web page)
Intel R©MKL 11.0 introduces a feature called Conditional Numerical
Reproducibility (CNR) which provides functions for obtaining
reproducible floating-point results when calling library functions
from their application. When using these new features, Intel MKL
functions are designed to return the same floating-point results
from run-to-run, subject to the following limitations:

I calls to Intel R©MKL occur in a single executable
I input and output arrays in function calls must be aligned on

16, 32, or 64 byte boundaries on systems with SSE / AVX1 /
AVX2 instructions support (resp.)

I the number of computational threads used by the library
remains constant throughout the run

Not what I call convenient.

Nathalie Revol et Philippe Théveny Numerical reproducibility issues

Numerical reproducibility issues in floating-point arithmetic
Numerical reproducibility issues in interval arithmetic

Conclusions

Reproducibility in the MKL of Intel: CNR
(From Intel Developer Zone web page)
Intel R©MKL 11.0 introduces a feature called Conditional Numerical
Reproducibility (CNR) which provides functions for obtaining
reproducible floating-point results when calling library functions
from their application. When using these new features, Intel MKL
functions are designed to return the same floating-point results
from run-to-run, subject to the following limitations:

I calls to Intel R©MKL occur in a single executable
I input and output arrays in function calls must be aligned on

16, 32, or 64 byte boundaries on systems with SSE / AVX1 /
AVX2 instructions support (resp.)

I the number of computational threads used by the library
remains constant throughout the run

Not what I call convenient.
Nathalie Revol et Philippe Théveny Numerical reproducibility issues

	Numerical reproducibility issues in floating-point arithmetic
	Why?
	Example and solutions for the summation
	Numerical reproducibility

	Numerical reproducibility issues in interval arithmetic
	Introduction to interval arithmetic
	Need of reproducibility
	Computing precision
	Order of the operations
	Rounding modes
	HPC issues

	Conclusions

