Numerical reproducibility in HPC:
issues in floating-point arithmetic
and in interval arithmetic

Nathalie Revol et Philippe Théveny
INRIA et ENS de Lyon
LIP (UMR 5668 CNRS - ENS de Lyon - INRIA - UCBL) - ENS de Lyon
Université de Lyon

RAIM
November 20, 2013



No numerical reproducibility
(Diethelm 2012)

Max = 9.54

(a)

Figure 4. Location of the computed maxima of the sheet thickness change. (a) The simulation with one
processor. (b) The second run of the simulation with four processors. The darker the element is colored,
the larger the corresponding sheet-thickness change. Elements colored in white have a sheet thickness

change of less than 8.5 percent.



No numerical reproducibility
(He and Ding 2001)

Table 1. Results of the summation in different natural orders with different
methods in double precision

Order Result

Longitude first 34.414768218994141
Reverse longitude first 32.302734375
Latitude first 0.67326545715332031
Reverse latitude first 0.734375

Longitude first SCS 0.3823695182800293
Longitude first DCS 0.3882288932800293
Latitude first SCS 0.37443733215332031
Latitude first DCS 0.32560920715332031
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No numerical reproducibility: why?

Consider the following program, whatever the language

float a,b,c,d,x;
X = atb+c+d;
Two questions:
» What precision will be used for the intermediate results?

» In which order will the three additions be executed?



e and solutions for the summation
cal reproducibility

No numerical reproducibility: why?

Consider the following program, whatever the language
float a,b,c,d,x;
X = atb+c+d;

Two questions:

» What precision will be used for the intermediate results?

» In which order will the three additions be executed?
Here we should remind that FP addition is not
associative: consider 1 + 2100 _ 100,



d solutions for the summation
erical reproducibility

No numerical reproducibility: why?

Consider the following program, whatever the language
float a,b,c,d,x;
X = atb+c+d;

Two questions:

» What precision will be used for the intermediate results?

» In which order will the three additions be executed?
Here we should remind that FP addition is not
associative: consider 1 + 2100 _ 100,

Fortran, C and Java have completely different answers.



d solutions for the summation

erical reproducibility

No numerical reproducibility: change of precision

float a,b,c,d,x;
X = atb+c+d;

Two questions:
» What precision will be used for the intermediate results?

» Bottom up precision: (here all float)

» Use the maximum precision available which is no slower

» Is the precision fixed by the language, or is the compiler free to
choose?

» In which order will the three additions be executed?



e and solutions for the summation

cal reproducibility

No numerical reproducibility: change of order

float a,b,c,d,x;
X = atb+c+d;

Two questions:

» What precision will be used for the intermediate results?
» In which order will the three additions be executed?
» With two FPUs (dual FMA, or SSE2, ...), (a+b)+(c +d)
faster than ((a+b)+c)+d.
» If a, c, d are constants, (a+c+d) + b faster.

> Is the order fixed by the language, or is the compiler free to
choose?

» Similar issue: should multiply-additions be fused in FMA?



Numerical reproducibility

Example of the summation
The floating-point addition is not associative.

Problem of numerical reproducibility with multicore or HPC
computations:

as the summation .7 ; a; on a multicore is not done in a
deterministic order,

» depending on the number of threads,

» depending on the state of the execution environment (various
loads imply various schedulings),

» depending on the execution order,

the result varies from on execution to the other.



Why?

Numerical reproducibility

Example of the summation: HPC issues

Problems:

» order of execution: depending on the number of threads, on
the state of the execution environment;

» computing precision: on heterogeneous targets, various
precisions for the registers. ..



Why?

Numerical reproducibility

“Solution” for the summation
(He and Ding 2001, Bailey 2012)

To increase the accuracy on the result, whatever the execution:
increase the computing precision.

» (He and Ding 2001): self-compensated summation and
double-double arithmetic;

» (Bailey 2012): double-double arithmetic.

Accuracy, stability are improved. ..
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Numerical reproducibility

“Solution” for the summation
(He and Ding 2001, Bailey 2012)

To increase the accuracy on the result, whatever the execution:
increase the computing precision.

» (He and Ding 2001): self-compensated summation and
double-double arithmetic;

» (Bailey 2012): double-double arithmetic.

Accuracy, stability are improved. ..
Reproducibility is still not guaranteed.
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Solution for the summation
(Rump, Ogita and Oishi 2008), (Nguyen and Demmel 2013)

Rump, Ogita and Oishi 2008:
Provide the correct rounding of the exact result: reproducible
result.



Why?

Numerical reproducibility

Solution for the summation
(Rump, Ogita and Oishi 2008), (Nguyen and Demmel 2013)
Rump, Ogita and Oishi 2008:

Provide the correct rounding of the exact result: reproducible
result.

Nguyen and Demmel 2013:
The result is reproducible: bit-to-bit reproducibility whatever
the execution.

The accuracy is variable. The result is not necessarily the
correctly rounded sum.

Tradeoff between the accuracy of the result and the
execution time.



Why?

Numerical reproducibility

Reproducibility in the MKL of Intel: CNR

MKL: Math Kernel Library, includes the BLAS.
On multicores, the MKL does not produce reproducible results.

Thus Intel got bug reports and requests for reproducibility.

CNR: conditional numerical reproducibility by MKL 11.0:

if the processors, the OS, the number of threads and the memory
alignment are preserved, then MKL guarantees numerical
reproducibility.

Non-efficient, non-user-friendly, non-portable solution.



Why?

Example and solutions for the summation

Numerical reproducibility?
Definition?

» Numerical reproducibility = best possible result = correct
rounding of the exact result?

» Numerical reproducibility = getting the same string of bits
whatever the run?

New light on numerical reproducibility:
» reproducibility and correct rounding are separate notions

> a hierarchy of reproducibility levels exists: accuracy vs
execution time.

Cf. Dongarra: get numerical quality rather than bit-to-bit, use the
least needed computing precision.
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A brief introduction

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:

(or “Thou shalt not lie”):

the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.



HPC issues

A brief introduction

Interval arithmetic: replace numbers by intervals and compute.
Initially: introduced to take into account roundoff errors (Moore
1966)

and also uncertainties (on the physical data...).

Later: computations “in the large”, computations with sets.

Interval analysis: develop algorithms for reliable (or verified, or
guaranteed, or certified) computing,

that are suited for interval arithmetic,

i.e. different from the algorithms from classical numerical analysis.



HPC issues

Definitions: operations

oy=Hull{xoy : x€x,y €y}

Arithmetic and algebraic operations: use the monotonicity

[ X1+ [y, y] = [x+y.x+7]
b X = . y] = [x-y.x-y]
[x, x] x L, )7] = [mln(x X y,x X ¥, X Xy, X x y), max(ibid. )]
[x, x]? = [min 2), max(x?, XZ)} if 0 & [x, X]
0 ,max x? x2)] otherwise



Need of reproducibility

rations

HPC issues

Interval arithmetic:
implementation using floating-point arithmetic

Implementation using floating-point arithmetic:
use directed rounding modes (cf. |IEEE 754 standard)

VI2,3] = [vV2, AV3]

Advantage: every result is guaranteed, in the sense that the
exact, unknown result, belongs to t he computed interval result.



HPC issues

Operations

Algebraic properties: associativity, commutativity hold, some are
lost:

» subtraction is not the inverse of addition, in particular
—x # [0]

» division is not the inverse of multiplication

» squaring is tighter than multiplication by oneself

» multiplication is only sub-distributive wrt addition

» with floating-point implementation, operations are not
associative either



Computir

Order of t?w

Rounding modes
HPC issues

Definitions: intervals, vectors, matrices

Objects:
» intervals of real numbers = closed connected sets of R

» interval for 7: [3.14159, 3.14160]
» data d measured with an absolute error less than +e:

[d —e,d+¢€]
> interval vector: components = intervals; also called box
) [0:2] [0;2]
[0:2] <[4 : 5]> [4;4.5]
[-6; 5]
— o P
[ 4 _ >
0 2 ! ! T
I — | _6
0 2

> interval matrix: components = intervals.
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Inclusion property

Interval arithmetic: replace numbers by intervals and compute.

Fundamental theorem of interval arithmetic:

aka " Inclusion property”

(or “Thou shalt not lie”):

the exact result (number or set) is contained in the computed
interval.

No result is lost, the computed interval is guaranteed to contain
every possible result.
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Optimistic point of view

Whatever the result, the inclusion property is satisfied:
interval arithmetic is not perturbed by numerical
reproducibility issues.



Rounding modes
HPC issues

Optimistic point of view

Whatever the result, the inclusion property is satisfied:
interval arithmetic is not perturbed by numerical
reproducibility issues.

Even better, as each different result encloses the exact result, a
more accurate result can be obtained by intersecting all computed
results:

interval arithmetic benefits from the lack of numerical
reproducibility.
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Pragmatic point of view

Reproducibility is important for
» debugging purposes,

> testing purposes.
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Computing precision
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Pragmatic point of view

Reproducibility is important for
» debugging purposes,

> testing purposes.

What may hinder reproducibility?
> computing precision,
» order of the operations, expressions,

» rounding modes.
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Influence of the computing precision

Influence on an interval computation: in practice,

» use the midpoint-radius representation for thin intervals: the
radius accounts for roundoff errors,

> use iterative refinement to reduce the width,

> use higher precision for critical intermediate computations
(residual) to hide the effect of the computing precision,

and get w(%) — w(x) ~ 27P|x|, i.e. the best possible result.

Examples: linear systems solving, Newton iteration.



Introduction to interval arithmetic
Need of reprod
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Influence of the expression

Using floating-point arithmetic: the problem comes from the
non-associativity of the operations

(a1 + a2) + (a3 + as) # ((a1 + a2) + a3) + as.

Using interval arithmetic: the expression influences the result

because operations are neither distributive nor reciprocal (4 of —,
x of /).

Using interval arithmetic implemented with floating-point
arithmetic: because operations are neither distributive nor
reciprocal (+ of —, x of /) nor associative: problems cumulate.



Rounding modes
HPC issues

Influence of the expression: example

[1,1] + [21007 2100] _ [2100, 2100]?
With these parentheses:
([1, 1]+ 2190, 2100]) [2100, 9100 — [100 10(2100Y] 2100 2100] — [0, wp(210))].
With those parentheses:
[1,1] + ([2190,2100] — [2100 2100y — [1 1] + [0, 0] = [L, 1].

Both include the results, one is more accurate than the other. ..

Moral lesson: interval results are always guaranteed to include the
exact result, whatever the chosen expression. However their
accuracy strongly depends on the chosen expression, on the order
of operations.



val arithmetic

Rounding modes
HPC issues

More on the influence of the order of the operations
Beware "hidden” assumptions on the order of the operations.

Example: interval matrix product.

In order to save 1 or 2 calls to gemm (BLAS matrix product),
Rump’s algorithm (2012) assumes that Ap, - B, and |Ay,| - |Bpy|
are computed in the same order.

BLAS do not guarantee anything on the order of operations nor on
the reproducibility of this order from one product to the next.

Moral lesson: interval results could depend on the order of
operations,

interval results could be wrong if they relied too much on the order
of operations.
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Circumventing these difficulties
(Théveny 2013)

To ensure that A, - By, and |Ap| - |Bm| are computed in the same
order:

> do not use gemm;
» compute simultaneously A, - By, and |Ap| - |Bnyl:
reduce the memory transfers;

> to get performances:

» optimize the use of the cache (L1);
» manually vectorize with SSE2 instructions.



al arithmetic
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Influence of the order of operations

Other important operations in interval arithmetic may also be
sensitive to the order:



al arithmetic

Rounding modes
HPC issues

Influence of the order of operations

Other important operations in interval arithmetic may also be
sensitive to the order:

bisection, working list of intervals to process later
in global optimization.



HPC issues

Rounding modes

Implementation using floating-point arithmetic:
use directed rounding modes (cf. IEEE 754 standard)

V/[2,3] = [RD(V2), RU(V/3)].

The implementation of interval arithmetic using floating-point
arithmetic is based on setting properly the rounding modes.



Inhuducﬂun to mtem al arithmetic

Order of ths operations

HPC issues

Rounding modes

Are rounding modes respected?

> by the compiler?
> by the libraries?
» Undocumented for the classical BLAS,

experimentally: no (Lauter and Ménissier-Morain 2012),
for fast methods such as Strassen’s matrix multiplication: no,
for specific libraries such as xBLAS (extended BLAS that are
based on error free transforms) (Li, Demmel, Bailey et al.
2008): impossible;
> by the execution environment? Undocumented, or explicitely

documented as non supported (for OpenMP).

v

v

v



HPC issues

Solution
(Revol, Makino and Berz 2003, Rump 2012)
Bound each rounding error by a quantity that is computable
using floating-point arithmetic:
» multiply by (1 + 2u) in rounding-to-nearest;

» multiply by (1 + 4u) in directed rounding modes or in
unknown rounding modes;

when adding or multiplying nonnegative quantities.

Limits:

this does not work with fast algorithms, e.g. for fast matrix
multiplications (different numbers of operations, varying
monotony).



o interval arithmetic

Order of the operations
Rounding modes

HPC issues

Specific issues:
» order of operations: no specified order in parallel evaluations
» computing precision: problem on distributed, heterogeneous
environments (not — yet — our problem)
» rounding modes:

» is the rounding mode local to each thread or global?

> is the rounding mode respected by the thread or set to a
default value?

» are rounding modes saved and restored at context switches
during a multithreaded computation?
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Conclusion
New light on numerical reproducibility:
» reproducibility and correct rounding are separate notions
> a hierarchy of reproducibility levels exists: accuracy vs
execution time.

Interval equivalent of the numerical reproducibility?

» the inclusion property (the guarantee that the computed
result contains the exact result) must be preserved,

» preserved inclusion property and correct rounding of the exact
result are separate notions,

> to guarantee the inclusion property, brute-force bounds on
roundoffs errors can be used,

> a hierarchy of guarantee levels exists: accuracy vs execution
time.



Conclusion: intervals and reproducibility

Interval computations are:
> apparently, safe against the lack of reproducibility;

> however, sensitive to the respect of the rounding mode and to
floating-point reproducibility;
» adopted methodology:
» firstly, develop interval algorithms that are based on
well-established numerical bricks;
» second, convince developers and vendors of these bricks to
clearly specify their behavior (rounding modes)
» if the second step fails,
> either replicate the work done for the optimization of the
considered numerical bricks;

> or use brute-force methods to compute an upper bound of the
roundoff errors.
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Repeatability and reproducibility

Repeatability:
getting the same result (the same bits) from run to run, on the
same machine.

Reproducibility:
getting the same result (the same bits) from run to run, whatever
the machine.



Citations are from the Fortran 2000 language standard: International
Standard ISO/IEC1539-1:2004. Programming languages — Fortran —
Part 1: Base language

The FORmula TRANSslator translates mathematical formula into
computations.

Any difference between the values of the expressions (1./3.)*3. and
1. is a computational difference, not a mathematical difference. The
difference between the values of the expressions 5/2 and 5. /2. is a
mathematical difference, not a computational difference.



Fortran respects mathematics, and only mathematics.

(--.) the processor may evaluate any mathematically equivalent
expression, provided that the integrity of parentheses is not violated.
Two expressions of a numeric type are mathematically equivalent if, for
all possible values of their primaries, their mathematical values are
equal. However, mathematically equivalent expressions of numeric type
may produce different computational results.

Remark: This philosophy applies to both order and precision.



Fortunately, Fortran respects your parentheses.

In addition to the parentheses required to establish the desired
interpretation, parentheses may be included to restrict the alternative
forms that may be used by the processor in the actual evaluation of the
expression. This is useful for controlling the magnitude and accuracy of
intermediate values developed during the evaluation of an expression.

(this was the solution to the last FP bug of LHC@Home at CERN)



The “C11" standard:
International Standard ISO/IEC ISO/IEC 9899:2011.

o Contrary to Fortran, the standard imposes an order of evaluation
o Parentheses are always respected,
o Otherwise, left to right order with usual priorities
o If you write x = a/b/c/d (all FP), you get 3 (slow) divisions.

o Consequence: little expressions rewriting

o Only if the compiler is able to prove that the two expressions always
return the same FP number, including in exceptional cases



Therefore, default behaviour of commercial compiler tend to ignore this
part of the standard...
But there is always an option to enable it.



@ So, perfect determinism wrt order of evaluation

o Strangely, intermediate precision is not determined by the
standard: it defines a bottom-up minimum precision, but invites
the compiler to take the largest precision which is larger than this
minimum, and no slower

o Idea:

o If you wrote float somewhere, you probably did so because you
thought it would be faster than double.

o If the compiler gives you long double for the same price,
you won't complain.



Drawbacks of C philosophy )

@ Small drawback

o Before SSE, float was almost always double or double-extended

o With SSE, float should be single precision (2-4x faster)

o Or, on a newer PC, the same computation became much less
accuratel

e Big drawbacks

o The compiler is free to choose which variables stay in registers, and
which go to memory (register allocation/spilling)

o It does so almost randomly (it totally depends on the context)

o But... storing a float variable in 64 or 80 bits of memory instead of
32 is usually slower, therefore (C philosophy) it should be avoided.

o Thus, sometimes a value is rounded twice, which may be even less
accurate than the target precision

o And sometimes, the same computation may give different results at
different points of the program.

The sort bug explained (because double promoted to 80 bits)



@ Integrist approach to determinism: compile once, run everywhere

o float and double only.

o Evaluation semantics with fixed order and precision.

@ No sort bug.

© Performance impact, but... only on PCs (Sun also sold SPARCs)

S You've paid for double-extended processor, and you can't use it
(because it doesn't run anywhere)

The great Kahan doesn’t like it.
@ Many numerical unstabilities are solved by using a larger precision
@ Look up Why Java hurts everybody everywhere on the Internet

| tend to disagree with him here. We can't allow the sort bug.



Quickly, Python J

Floating point numbers

These represent machine-level double precision floating point numbers.
You are at the mercy of the underlying machine architecture (and C or
Java implementation) for the accepted range and handling of overflow.

You have been warned.

Python does not support single-precision floating point numbers; the
savings in processor and memory usage that are usually the reason for
using these is dwarfed by the overhead of using objects in Python, so
there is no reason to complicate the language with two kinds of floating
point numbers.



Solution for the summation
(Rump, Ogita and Oishi 2008)

Provide the correct rounding of the exact result: reproducible
result.
Principle:

» align mantissas (as if in fixed-point arithmetic);

> split mantissas into vertical slices, of width small enough to
allow exact summation of a slice into a floating-point number;

» add the leftmost slice;

» as long as it is not possible to round, add one more slice from
the right.



Solutions for the summation
(Nguyen and Demmel 2013)

» Fix in advance the number of slices;

» sum the slices.

The result is reproducible: bit-to-bit reproducibility whatever
the execution.

The accuracy is variable and is determined by the number of
slices. The result is not necessarily the correctly rounded sum.

Tradeoff between the accuracy of the result and the
execution time.



Reproducibility in the MKL of Intel: CNR

(From Intel Developer Zone web page)
Intel® MKL 11.0 introduces a feature called Conditional Numerical
Reproducibility (CNR) which provides functions for obtaining
reproducible floating-point results when calling library functions
from their application. When using these new features, Intel MKL
functions are designed to return the same floating-point results
from run-to-run, subject to the following limitations:
» calls to IntelR MKL occur in a single executable
> input and output arrays in function calls must be aligned on
16, 32, or 64 byte boundaries on systems with SSE / AVX1 /
AVX2 instructions support (resp.)
» the number of computational threads used by the library
remains constant throughout the run



Reproducibility in the MKL of Intel: CNR

(From Intel Developer Zone web page)
Intel® MKL 11.0 introduces a feature called Conditional Numerical
Reproducibility (CNR) which provides functions for obtaining
reproducible floating-point results when calling library functions
from their application. When using these new features, Intel MKL
functions are designed to return the same floating-point results
from run-to-run, subject to the following limitations:
» calls to IntelR MKL occur in a single executable
> input and output arrays in function calls must be aligned on
16, 32, or 64 byte boundaries on systems with SSE / AVX1 /
AVX2 instructions support (resp.)
» the number of computational threads used by the library
remains constant throughout the run
Not what | call convenient.
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