Some stories about small octagons

Frédéric Messine

4 Small Octagons

and GO codes

Some stories about small octagons

Frédéric Messine

ENSEEIHT-LAPLACE, Toulouse, France

November 2013

RAIM 2013 - IHP - Paris

Presentation Outline

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO codes

Stories of Four Small Octagon

Some Definitions

Four Problems

Reinhardt's results

Quadrilateral Poylgons

Reuleaux Polygons

Small Hexagon with Perimeter Max

The Four Small Octagons

Formulations and Deterministic Global Optimization Codes
Problem Formulation for the Largest Small Octagon
Numerical Solutions and Solvers
Lower and Upper Bounds

Presentation Outline

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO codes

Stories of Four Small Octagon

Some Definitions

Four Problems

Reinhardt's results

Quadrilateral Poylgons

Reuleaux Polygons

Small Hexagon with Perimeter Max

The Four Small Octagons

Formulations and Deterministic Global Optimization Codes

Problem Formulation for the Largest Small Octagon

Numerical Solutions and Solvers

Lower and Upper Bounds

Outline

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

Formulations and GO codes

Stories of Four Small Octagon

Some Definitions

Four Problems

Reinhardt's results

Quadrilateral Poylgons

Rouloaux Polygons

Reuleaux Polygons

Small Hexagon with Perimeter Max

The Four Small Octagons

Formulations and Deterministic Global Optimization Codes
Problem Formulation for the Largest Small Octagon
Numerical Solutions and Solvers
Lower and Upper Bounds

Some Definitions

Some stories about small octagons

Frédéric Messine

4 Consti

Octagons
Some Definitions

Four Problems

Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon

with Perimeter Ma 4 Small Octagons

Formulations and GO codes

Definition

A n-gon is a polygon with n sides and n vertices.

Definition

The diameter of a n-gon is longest distance between two vertices.

Definition

A small n—gon is a n—gon with a diameter 1

We address in this work: isodiametric problems and questions about perimeter and area.

Some Definitions

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions

Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO codes

Definition

A n—gon is a polygon with n sides and n vertices.

Definition

The diameter of a n—gon is longest distance between two vertices.

Definition

A small n—gon is a n—gon with a diameter 1.

We address in this work: isodiametric problems and questions about perimeter and area.

Four Problems

Some stories about small octagons

Frédéric Messine

Octagons
Some Definit

Some Definition Four Problems Reinhardt's resu

Reinhardt's res Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Max 4 Small Octagons

Formulations and GO code

Definition

 A_n denote the area of a small n-gon and P_n its perimeter.

Definition

 $A_n^{=}$ denote the area of an equilateral small n-gon and $P_n^{=}$ its perimeter.

Definition (Four Problems)

- ▶ Which small polygons have the maximal area?
- ▶ Which small polygons have the maximal perimeter?
- ▶ Which equilateral small polygons have the maximal area?
- ► Which equilateral small polygons have the maximal perimeter?

Four Problems

Some stories about small octagons

Frédéric Messine

4 Small
Octagons
Some Definitions
Four Problems
Reinhardt's results
Ouadrilateral

Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perimeter Ma
4 Small Octagons

Formulations and GO code

Definition

 A_n denote the area of a small n—gon and P_n its perimeter.

Definition

 $A_n^{=}$ denote the area of an equilateral small n-gon and $P_n^{=}$ its perimeter.

Definition (Four Problems)

- ▶ Which small polygons have the maximal area?
- ▶ Which small polygons have the maximal perimeter?
- Which equilateral small polygons have the maximal area?
- Which equilateral small polygons have the maximal perimeter?

Reinhardt's results 1922

Some stories about small octagons

Frédéric Messine

Octagons

Four Problems Reinhardt's results

Reinhardt's result Quadrilateral

Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

Formulations and GO code

Theorem

The regular n—gons have all the properties of maximal perimeter and area, for n odd.

Theorem

For all n, a bound for the perimeter is

$$P_n \le 2n \sin \frac{\pi}{2n}$$

Theorem

For all n, a bound for the area is

$$A_n \le \frac{1}{2} \times n \times \left(\frac{1}{2\cos\frac{\pi}{2n}}\right)^2 \times \sin\frac{2\pi}{n}$$

The bounds are reached when n is odd

Reinhardt's results 1922

Some stories about small octagons

Frédéric Messine

4 Small

Octagons Some Definit

Four Problems Reinhardt's results

Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

Formulations and GO code

Theorem

The regular n—gons have all the properties of maximal perimeter and area, for n odd.

Theorem

For all n, a bound for the perimeter is

$$P_n \le 2n \sin \frac{\pi}{2n}$$

Theorem

For all n, a bound for the area is

$$A_n \le \frac{1}{2} \times n \times \left(\frac{1}{2\cos\frac{\pi}{2n}}\right)^2 \times \sin\frac{2\pi}{n}$$

The bounds are reached when n is odd

Reinhardt's results 1922

Some stories about small octagons

Frédéric Messine

4 Small

Some Definitions Four Problems Reinhardt's results

Quadrilateral Polygons Reuleaux Polygons Small Hexagon

Small Hexagon with Perimeter Ma: 4 Small Octagons

Formulations and GO codes

Theorem

The regular n—gons have all the properties of maximal perimeter and area, for n odd.

Theorem

For all n, a bound for the perimeter is

$$P_n \leq 2n \sin \frac{\pi}{2n}$$

Theorem

For all n, a bound for the area is

$$A_n \le \frac{1}{2} \times n \times \left(\frac{1}{2\cos\frac{\pi}{2n}}\right)^2 \times \sin\frac{2\pi}{n}$$

The bounds are reached when n is odd.

Small Quadrilateral Polygons: Maximal Area

Some stories about small octagons

Frédéric Messine

4 Small

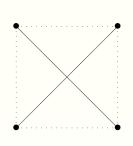
Some Definitions Four Problems

Reinhardt's results Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO codes

▶ Maximal area n = 4:



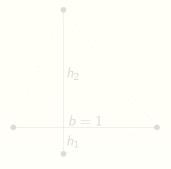


Figure :
$$A_4^{=} = A_4 = \frac{1}{2}$$
.

With
$$\frac{b \times h_1}{2} + \frac{b \times h_2}{2} = \frac{b \times (h_1 + h_2)}{2} = \frac{1}{2}$$
, $b = 1$ and $h_1 + h_2 = 1$.

Small Quadrilateral Polygons: Maximal Area

Some stories about small octagons

Frédéric Messine

4 Small

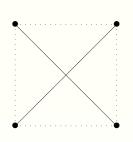
Some Definitions Four Problems Reinhardt's results

Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO codes

▶ Maximal area n = 4:



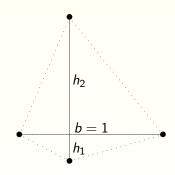


Figure :
$$A_4^= = A_4 = \frac{1}{2}$$
.

With
$$\frac{b \times h_1}{2} + \frac{b \times h_2}{2} = \frac{b \times (h_1 + h_2)}{2} = \frac{1}{2}$$
, $b = 1$ and $h_1 + h_2 = 1$.

Small Quadrilateral Polygons: Maximal Area

Some stories about small octagons

Frédéric Messine

4 Small Octagons

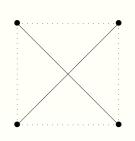
Some Definitions Four Problems Reinhardt's results

Reinhardt's resul Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Ma

Formulations and GO codes

▶ Maximal area n = 4:



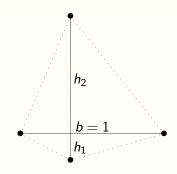


Figure :
$$A_4^{=} = A_4 = \frac{1}{2}$$
.

With
$$\frac{b \times h_1}{2} + \frac{b \times h_2}{2} = \frac{b \times (h_1 + h_2)}{2} = \frac{1}{2}$$
, $b = 1$ and $h_1 + h_2 = 1$.

Small Quadrilateral Polygons: Maximal Perimeter

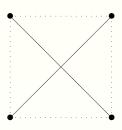
Some stories about small octagons

Frédéric Messine

Quadrilateral Polygons

4 Small Octagons

▶ Maximal perimeter n = 4:



$$P_4^{=} = 2\sqrt{2} \approx 2.8284$$

$$P_4 = 2 + 4 \sin \frac{\pi}{12} \approx 3.0353$$

Small Quadrilateral Polygons: Maximal Perimeter

Some stories about small octagons

Frédéric Messine

4 Small

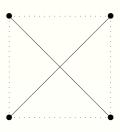
Some Definitions Four Problems Reinhardt's results

Reinhardt's results Quadrilateral Polygons

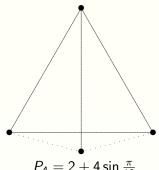
Reuleaux Polygons Small Hexagon with Perimeter Ma: 4 Small Octagons

Formulations and GO codes

▶ Maximal perimeter n = 4:



$$P_4^{=} = 2\sqrt{2} \approx 2.8284$$



$$P_4 = 2 + 4 \sin \frac{\pi}{12} \approx 3.0353$$

Result from Tamvakis 1987 (and Datta 1997).

Some stories about small octagons

Frédéric Messine

4 Small

Some Definitions Four Problems Reinhardt's results Quadrilateral

Reuleaux Polygons Small Hexagon

Small Hexagon with Perimeter Max 4 Small Octagons

Formulations and GO codes

 $P_{\infty} := \max$ Perimeter

s.t. Diameter = 1

The set is convex

SOLUTION: The disk

Some stories about small octagons

Frédéric Messine

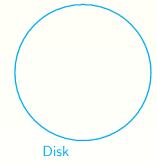
Reinhardt's results

Reuleaux Polygons

Small Hexagon with Perimeter Max 4 Small Octagons

$$P_{\infty} := \max_{\text{s.t.}} \quad \text{Perimeter}$$
 s.t. $\quad \text{Diameter} = 1$ The set is convex

SOLUTION: The disk



$$P_{\infty} = \pi$$

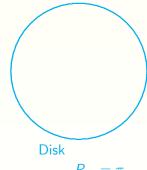
Some stories about small octagons

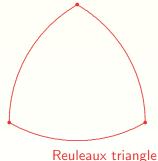
Reinhardt's results

Reuleaux Polygons

Small Hexagon with Perimeter Max 4 Small Octagons

SOLUTION: The disk and odd Reuleaux polygons are solutions.





Some stories about small octagons

Frédéric Messine

4 Small
Octagons

Some Definitions
Four Problems

Reinhardt's results Quadrilateral Polygons

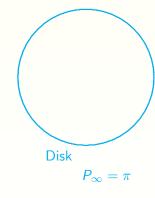
Reuleaux Polygons Small Hexagon

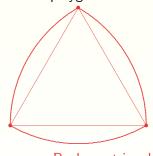
Small Hexagon with Perimeter Max 4 Small Octagons

Formulations and GO codes

$$P_{\infty} := \max_{\text{s.t.}} \quad \text{Perimeter}$$
 s.t. $\quad \text{Diameter} = 1$ $\quad \text{The set is convex}$

SOLUTION: The disk and odd Reuleaux polygons are solutions.





Reuleaux triangle
$$P_{\infty} = 3(\frac{\pi}{3}) = \pi$$

Odd Reuleaux polygons: figures of constant width

Some stories about small octagons

Frédéric Messine

4 Small

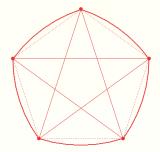
Octagons

Four Problems Reinhardt's results Quadrilateral

Reuleaux Polygons

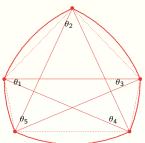
Small Hexagon with Perimeter Max 4 Small Octagons

Formulations and GO codes



Reuleaux regular pentagon

$$P_{\infty} = 5(\frac{\pi}{5}) = \pi$$



Reuleaux irregular pentagon

$$P_{\infty} = \sum_{i=1}^{5} \theta_i = \pi$$

Some stories about small octagons

Frédéric Messine

4 Small Octagon:

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Max

with Perimeter Ma
4 Small Octagons

Formulations and GO codes

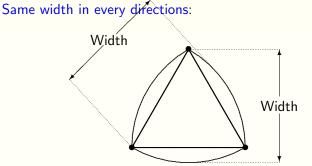


Figure: Example of width of a Reuleaux triangle.

Applications

- ► A Reuleaux triangle is used in the SMART car (for the injection system)!
- ► For the design of a dollar: 1\$ Canadian is a Reuleaux polygon with eleven sides.

See "A \$1 Problem" paper in AMM of Mossinghoff.

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter May

with Perimeter Ma: 4 Small Octagons

Formulations and GO codes

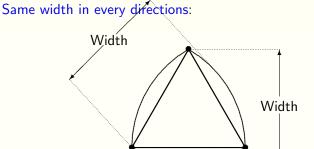


Figure: Example of width of a Reuleaux triangle.

Applications:

- ► A Reuleaux triangle is used in the SMART car (for the injection system)!
- ► For the design of a dollar: 1\$ Canadian is a Reuleaux polygon with eleven sides.

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons

Reuleaux Polygons Small Hexagon with Perimeter Max

Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO codes

Same width in every directions:

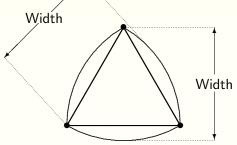


Figure: Example of width of a Reuleaux triangle.

Applications:

- ▶ A Reuleaux triangle is used in the SMART car (for the injection system)!
- ► For the design of a dollar: 1\$ Canadian is a Reuleaux polygon with eleven sides.

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons

Reuleaux Polygon Small Hexagon with Perimeter M

4 Small Octagons Formulations Same width in every directions:

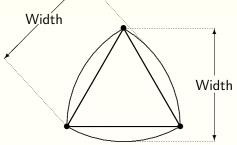


Figure: Example of width of a Reuleaux triangle.

Applications:

- ▶ A Reuleaux triangle is used in the SMART car (for the injection system)!
- ► For the design of a dollar: 1\$ Canadian is a Reuleaux polygon with eleven sides.

See "A \$1 Problem" paper in AMM of Mossinghoff.

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons

with Perimeter M 4 Small Octagons Same width in every directions:

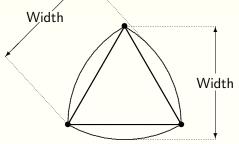


Figure: Example of width of a Reuleaux triangle.

Applications:

- ► A Reuleaux triangle is used in the SMART car (for the injection system)!
- ► For the design of a dollar: 1\$ Canadian is a Reuleaux polygon with eleven sides.
 See "A \$1 Problem" paper in AMM of Mossinghoff.

Examples of coins

Some stories about small octagons

Frédéric Messine

4 Small

Octagon

Some Definitions Four Problems Reinhardt's results

Reinhardt's result Quadrilateral Polygons

Reuleaux Polygons

Small Hexagon with Perimeter Max

4 Small Octagons

Formulations and GO codes

Some stories about small octagons

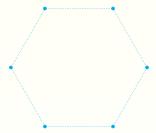
Frédéric Messine

Reinhardt's results

Small Hexagon with Perimeter Max

4 Small Octagons

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.



$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$

Some stories about small octagons

Frédéric Messine

Reinhardt's results

Small Hexagon with Perimeter Max 4 Small Octagons

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.



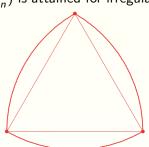
$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$

Some stories about small octagons

Reinhardt's results

Small Hexagon with Perimeter Max 4 Small Octagons

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.



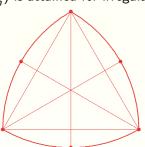
$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$

Some stories about small octagons

Reinhardt's results

Small Hexagon with Perimeter Max 4 Small Octagons

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.



$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$

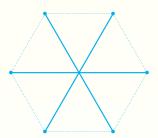
Some stories about small octagons

Frédéric Messine

Reinhardt's results

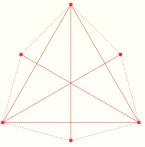
Small Hexagon with Perimeter Max 4 Small Octagons

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.



Regular hexagon

$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$



Optimal hexagon

$$P_6 = P_6^= = 12 sin(\frac{\pi}{12}) \approx 3.10582854$$

Some stories about small octagons

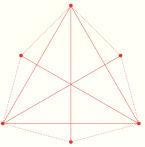
Frédéric Messine

Small Hexagon

with Perimeter Max

The upper bound of $2n\sin(\frac{\pi}{2n})$ is attained for irregular *n*-gons.

$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$



Optimal hexagon

$$(P_6) = 6\sin(\frac{\pi}{6}) = 3$$
 $P_6 = P_6^{=} = 12\sin(\frac{\pi}{12}) \approx 3.10582854$

When n is not a power of 2,

$$2n\sin(\frac{\pi}{2n}) \le \max P_n^{=} \le \max P_n \le 2n\sin(\frac{\pi}{2n}).$$

This result is due to Vincze 1952.

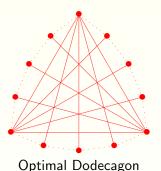
Examples of Maximal Perimeter Solutions when n is not a Power of 2

Some stories about small octagons

Frédéric Messine

4 Small
Octagons
Some Definitions
Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perimeter Max

4 Small Octagons
Formulations
and GO codes



 $P_{12} = P_{12}^{=} \approx 3.1326$

Figure : Examples of polygons with maximal perimeter when n is even but $n \neq 2^s$.

Graham's Hexagon with Maximal Area, 1975

Some stories about small octagons

Frédéric Messine

4 Small Octagons Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO codes

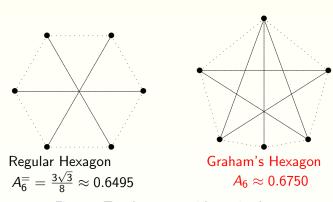


Figure: Two hexagons with maximal area.

Gain about 3.9% (comparing to the regular hexagon).

Diameter Graph and Geometric Reasoning

Some stories about small octagons

Frédéric Messine

4 Small Octagon

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

4 Small Octagons
Formulations
and GO codes

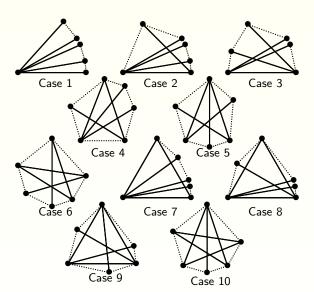


Figure : The ten possible diameter configurations for the hexagon $_{\rm 16/\ 32}$

Case 10 with Symmetry Hypothesis

Some stories about small octagons

4 Small Octagons
Some Definitions
Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perinter Max
4 Small Octagons

Formulations and GO codes

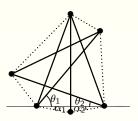


Figure : Configuration 10 of area R_1 .

Hypothesis of symmetry ? Graham wrote in his paper:

"It is immediate that in order to maximize area R_1 , it is necessary that $\alpha_1=\alpha_2$. It is slightly less immediate (but equally true) that it is also necessary that $\theta_1=\theta_2$. (The details are not particularly interesting and are omitted)."

 \implies solve a global optimization problem in one variable.

Graham's, Bieri's or Yuan's Hexagon?

Some stories about small octagons

4 Small
Octagons
Some Definitions
Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perimeter Max

Formulations and GO codes

Retrospectively with hypothesis of symmetry, Bieri answers to this question in 1961. 14 years before Graham!

Title: "Ungelöste Probleme: Zweiter Nachtrag zu Nr. 12" (Open Problem, second supplement to number 12) answering to Lenz: "Ungelöste Probleme Nr. 12" posed in 1956 in *Elemente der Mathematik*.

This remark come from Mossinghoff: "a 1\$ problem", AMM

Bao Yuan give a complete proof in his Report of Master Degree in 2004: "The Largest Small Hexagon".

Graham's, Bieri's or Yuan's Hexagon?

Some stories about small octagons

4 Small
Octagons
Some Definitions
Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perimeter Max
4 Small Ortagons

Formulations and GO codes

Retrospectively with hypothesis of symmetry, Bieri answers to this question in 1961. 14 years before Graham!

Title: "Ungelöste Probleme: Zweiter Nachtrag zu Nr. 12"

(Open Problem, second supplement to number 12)

answering to Lenz: "Ungelöste Probleme Nr. 12" posed in

answering to Lenz: "Ungelöste Probleme Nr. 12" posed in 1956 in *Elemente der Mathematik*.

This remark come from Mossinghoff: "a 1\$ problem", AMM.

Bao Yuan give a complete proof in his Report of Master Degree in 2004: "The Largest Small Hexagon".

Some stories about small octagons

Frédéric Messine

- 4 Small Octagons
- Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons
- Small Hexagon with Perimeter Max

Formulations and GO code

- ▶ The solutions to P_{∞} are the disk and all odd Reuleaux polygons.
- ▶ When *n* is odd, the regular *n*-gon solves the four problems of maximal perimeter and area.
- When $n = k2^s$ for k odd and s integer, then the k-gon with extra vertices solves the both problems for the perimeter.
- When n=4, the square solves $P_4^==2\sqrt{2}\approx 2.828427$ and the following solves $P_4=2+4\sin(\frac{\pi}{12})\approx 3.035276$
- When n = 6, the Graham's hexagon solved max A_6 and the regular hexagon solve max $A_6^=$; Vincze's hexagon (based on a Reulaux triangle) solved max P_6 and max P_6

Some stories about small octagons

Frédéric Messine

- 4 Small Octagons
- Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO code

- ▶ The solutions to P_{∞} are the disk and all odd Reuleaux polygons.
- ▶ When *n* is odd, the regular *n*-gon solves the four problems of maximal perimeter and area.
- When $n = k2^s$ for k odd and s integer, then the k-gon with extra vertices solves the both problems for the perimeter.
- When n=4, the square solves $P_4^==2\sqrt{2}\approx 2.828427$ and the following solves $P_4=2+4\sin(\frac{\pi}{12})\approx 3.035276$
- When n = 6, the Graham's hexagon solved max A_6 and the regular hexagon solve max A_6^- ; Vincze's hexagon (based on a Reulaux triangle) solved max P_6 and max P_6^-

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO code

- ▶ The solutions to P_{∞} are the disk and all odd Reuleaux polygons.
- ▶ When *n* is odd, the regular *n*-gon solves the four problems of maximal perimeter and area.
- When $n = k2^s$ for k odd and s integer, then the k-gon with extra vertices solves the both problems for the perimeter.
- When n=4, the square solves $P_4^==2\sqrt{2}\approx 2.828427$ and the following solves $P_4=2+4\sin(\frac{\pi}{12})\approx 3.035276$
- When n = 6, the Graham's hexagon solved max A_6 and the regular hexagon solve max $A_6^=$; Vincze's hexagon (based on a Reulaux triangle) solved max P_6 and max $P_6^=$

Some stories about small octagons

Frédéric Messine

4 Small Octagon

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO code

- ▶ The solutions to P_{∞} are the disk and all odd Reuleaux polygons.
- ▶ When *n* is odd, the regular *n*-gon solves the four problems of maximal perimeter and area.
- ▶ When $n = k2^s$ for k odd and s integer, then the k-gon with extra vertices solves the both problems for the perimeter.
- When n=4, the square solves $P_4^==2\sqrt{2}\approx 2.828427$ and the following solves $P_4=2+4\sin(\frac{\pi}{12})\approx 3.035276$.
- When n = 6, the Graham's hexagon solved max A_6 and the regular hexagon solve max $A_6^=$; Vincze's hexagon (based on a Reulaux triangle) solved max P_6 and max $P_6^=$

Some stories about small octagons

Frédéric Messine

4 Small Octagon

Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Max

Formulations and GO code

- ▶ The solutions to P_{∞} are the disk and all odd Reuleaux polygons.
- ▶ When *n* is odd, the regular *n*-gon solves the four problems of maximal perimeter and area.
- When $n = k2^s$ for k odd and s integer, then the k-gon with extra vertices solves the both problems for the perimeter.
- When n=4, the square solves $P_4^==2\sqrt{2}\approx 2.828427$ and the following solves $P_4=2+4\sin(\frac{\pi}{12})\approx 3.035276$.
- When n = 6, the Graham's hexagon solved max A_6 and the regular hexagon solve max $A_6^=$; Vincze's hexagon (based on a Reulaux triangle) solved max P_6 and max $P_6^=$.

Some stories about small octagons

Frédéric Messine

4 Small
Octagons
Some Definition
Four Problems
Reinhardt's res

Quadrilateral Polygons Reuleaux Polygons Small Hexagon

with Perimeter Ma 4 Small Octagons

Formulations and GO codes

- ► For the area and the perimeter ⇒ 31 diameter graphs.
- ▶ About 10 cases can be discarded by geometric reasoning
- Algorithms: Branch and Cut algorithm for quadratic non-convex programs for the area -CPU—times: about 100h- and IBBA for the perimeter -56h (44h for discarding case 18)-

Some stories about small octagons

Frédéric Messine

4 Small Octagons

 \triangleright For the area and the perimeter \Longrightarrow 31 diameter graphs.

- ▶ About 10 cases can be discarded by geometric reasoning.

Some stories about small octagons

Frédéric Messine

4 Small Octagons

 \triangleright For the area and the perimeter \Longrightarrow 31 diameter graphs.

- ▶ About 10 cases can be discarded by geometric reasoning.
- ► Algorithms: Branch and Cut algorithm for quadratic non-convex programs for the area -CPU-times: about 100h- and IBBA for the perimeter -56h (44h for discarding case 18)-

Some stories about small octagons

Frédéric Messine

4 Small

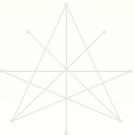
Some Definitions
Four Problems
Reinhardt's result
Quadrilateral
Polygons
Reuleaux Polygon

Small Hexagon with Perimeter Max 4 Small Octagons

Formulations and GO codes

- ► For the area and the perimeter ⇒ 31 diameter graphs.
- ▶ About 10 cases can be discarded by geometric reasoning.
- ► Algorithms: Branch and Cut algorithm for quadratic non-convex programs for the area -CPU—times: about 100h- and IBBA for the perimeter -56h (44h for discarding case 18)-

Solutions:



Optimal Octagon (29)

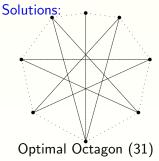
Some stories about small octagons

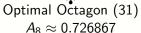
Frédéric Messine

- 4 Small Octagons

 \triangleright For the area and the perimeter \Longrightarrow 31 diameter graphs.

- ▶ About 10 cases can be discarded by geometric reasoning.
- ► Algorithms: Branch and Cut algorithm for quadratic non-convex programs for the area -CPU-times: about 100h- and IBBA for the perimeter -56h (44h for discarding case 18)-



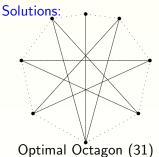


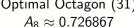
Some stories about small octagons

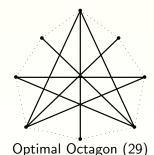
Frédéric Messine

- 4 Small
- Octagons
 Some Definitions
 Four Problems
 Reinhardt's results
 Quadrilateral
 Polygons
 Reuleaux Polygons
 Small Hexagon

- ▶ For the area and the perimeter \Longrightarrow 31 diameter graphs.
- ▶ About 10 cases can be discarded by geometric reasoning.
- Algorithms: Branch and Cut algorithm for quadratic non-convex programs for the area -CPU-times: about 100h- and IBBA for the perimeter -56h (44h for discarding case 18)-







 $P_8 \approx 3.121147...$

Some stories about small octagons

Frédéric Messine

4 Small

Octagons Some Defini

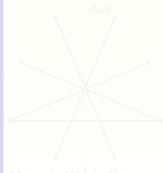
Four Problems Reinhardt's results Quadrilateral

Reuleaux Polyg

Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO code

► For the perimeter, Vincze published in 1952 a better one (due to his wife)



Vcinze's Wife's Octagon $(P_s^=) \approx 3.0912...$

Optimal Octagon $P_{\bullet}^{-} \approx 3.095609...$

► For the perimeter, Vincze published in 1952 a better one:

► For the area, the regular octagon is optimal.

Some stories about small octagons

Frédéric Messine

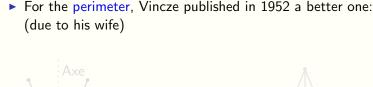
4 Small Octagons

► For the area, the regular octagon is optimal.

Some stories about small octagons

Frédéric Messine

- 4 Small Octagons

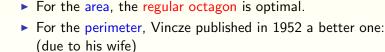


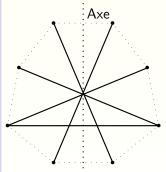
Some stories about small octagons

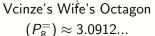
Frédéric Messine

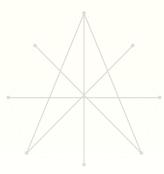
- 4 Small
- Octagon
- Some Definitions Four Problems Reinhardt's results Quadrilateral
- Quadrilateral Polygons Reuleaux Polygons
- Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO codes









Optimal Octagon $P= \approx 3.095609$

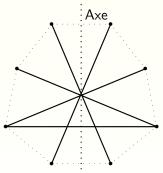
Some stories about small octagons

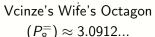
Frédéric Messine

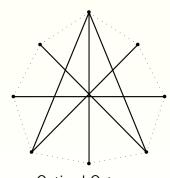
- Small
- Octagon Some De
- Four Problems Reinhardt's results Quadrilateral Polygons
- Small Hexagon with Perimeter Ma 4 Small Octagons

Formulations and GO codes

- ► For the area, the regular octagon is optimal.
- ► For the perimeter, Vincze published in 1952 a better one: (due to his wife)







Optimal Octagon $P_8^= \approx 3.095609...$

Some stories about small octagons

Frédéric Messine

4 Small Octagons Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

- ▶ 3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen and Charles Audet (J. Xiong and S. Perron)
- ▶ 1 Pour la Science with Pierre Hansen and Charles Audet June 2009.
- ▶ 1 JOGO with Pierre Hansen and Charles Audet, 2009.
- Octagonist Club:
 - Pierre Hansen, Charles Audet, Frédéric Messine.
 - ▶ Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA)
 - Vincze's Wife

Some stories about small octagons

Frédéric Messine

4 Small Octagons Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

- ▶ 3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen and Charles Audet (J. Xiong and S. Perron)
- ▶ 1 Pour la Science with Pierre Hansen and Charles Audet, June 2009.
- ▶ 1 JOGO with Pierre Hansen and Charles Audet, 2009.
- Octagonist Club:
 - Pierre Hansen, Charles Audet, Frédéric Messine.
 - ▶ Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA)
 - ▶ Vincze's Wife

Some stories about small octagons

Frédéric Messine

4 Small
Octagons
Some Definitions
Four Problems
Reinhardt's results
Quadrilateral
Polygons
Reuleaux Polygons
Small Hexagon
with Perimeter Ma

- ▶ 3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen and Charles Audet (J. Xiong and S. Perron)
- ▶ 1 Pour la Science with Pierre Hansen and Charles Audet, June 2009.
- ▶ 1 JOGO with Pierre Hansen and Charles Audet, 2009.
- Octagonist Club:
 - Pierre Hansen, Charles Audet, Frédéric Messine.
 - ▶ Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA).
 - ► Vincze's Wife

Some stories about small octagons

Frédéric Messine

4 Small Octagons Some Definitions Four Problems Reinhardt's results Quadrilateral Polygons Reuleaux Polygons Small Hexagon with Perimeter Ma

- ▶ 3 papers in JCTA (2001, 2004, 2007) with Pierre Hansen and Charles Audet (J. Xiong and S. Perron)
- ▶ 1 Pour la Science with Pierre Hansen and Charles Audet, June 2009.
- ▶ 1 JOGO with Pierre Hansen and Charles Audet, 2009.
- Octagonist Club:
 - Pierre Hansen, Charles Audet, Frédéric Messine.
 - ▶ Junge Xiong, Sylvain Perron, Jordan Ninin(2013, IBBA).
 - Vincze's Wife

Presentation Outline

Some stories about small octagons

Frédéric Messine

Formulations and GO codes

Formulations and Deterministic Global Optimization Codes Problem Formulation for the Largest Small Octagon Numerical Solutions and Solvers Lower and Upper Bounds

Problem Formulation for the Largest Small Octagon

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

and GO code

formulation for A₈
Numerical
Solutions and
Solvers
Lower and Upper

Formulation by a nonconvex quadratic program:

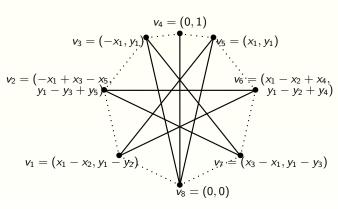


Figure : Case of n = 8 vertices. Definition of variables.

A nonconvex quadratic program

Some stories about small octagons

Frédéric Messine

Problem

formulation for A_8

$$\begin{cases} \max_{x,y} & \frac{1}{2} \{ (x_2 + x_3 - 4x_1)y_1 + (3x_1 - 2x_3 + x_5)y_2 \\ & + (3x_1 - 2x_2 + x_4)y_3 + (x_3 - 2x_1)y_4 \\ & + (x_2 - 2x_1)y_5 \} + x_1 \end{cases}$$
s.t.
$$(2x_1 - x_2 - x_3 + x_4 + x_5)^2 + (y_2 - y_3 + y_4 - y_5)^2 = 1$$
$$(x_3 - 2x_1 + x_2)^2 + (x_7 - x_8)^2 \le 1$$
$$x_i^2 + y_i^2 = 1, i = 1, 2, 3, 4, 5$$
$$x_2 - x_3 \ge 0$$
$$y \ge 0$$
$$0 \le x_1 \le 0.5$$

 $0 < x_i < 1, \quad i = 2, 3, 4, 5.$

Numerical solutions

Some stories about small octagons

Frédéric Messine

Numerical

Solutions and Solvers

Soft.	Year	Accuracy	CPU-time
QP	1997	10^{-4}	100h
Gloptipoly	2010	$10^{-7}*$	5s
IBBA	2013	10 ⁻⁸ *	171s

- ▶ QP : $A_8^* \approx 0.726867$
- ▶ Gloptipoly: $A_8^* \in [0.72686845, 0.72686849]$
- ▶ IBBA: $A_8^* \in [0.726868479732928, 0.7268684897329281]$

Numerical solutions

Some stories about small octagons

Frédéric Messine

4 Small Octagon

Formulations and GO cod

and GO code Problem

Solvers

formulation for A Numerical Solutions and

Lower and Upper Bounds

Soft.	Year	Accuracy	CPU-time
QP	1997	10^{-4}	100h
Gloptipoly	2010	$10^{-7}*$	5s
IBBA	2013	10 ⁻⁸ *	171s

- ▶ QP : $A_8^* \approx 0.726867$
- ▶ Gloptipoly: $A_8^* \in [0.72686845, 0.72686849]$
- ► IBBA: $A_8^* \in [0.726868479732928, 0.7268684897329281]$

Solution: $x_1 = 0.26214172, x_2 = 0.67123417, x_3 = 0.67123381, x_4 = 0.90909242, x_5 = 0.90909213$

Solvers

Some stories about small octagons

Frédéric Messine

4 Small

Octagons

Formulations and GO code

Problem formulation for A

Numerical Solutions and Solvers

Lower and Upper Bounds

- ▶ QP : (RLT) $x_i x_j \rightarrow w_{ij}$ + McCormick constraints $(w_{ij} \leq .\& \geq .)$.
- ► Gloptipoly:

 SDP relaxation (find polynomial bases 2

SDP relaxation (find polynomial bases - 2nd relaxation VSDP - rigorous upper bounds.

► IBBA:

$$\begin{cases} \max_{\mathbf{x} \in X \subseteq \mathbb{R}^n} & f(\mathbf{x}) \\ \text{s.t.} & g_i(\mathbf{x}) \leq 0, \\ & h_j(\mathbf{x}) = 0, \end{cases} \rightarrow \begin{cases} \max_{\mathbf{x} \in X^{\mathcal{F}} \subseteq \mathcal{F}^n} & f^{\mathcal{F}}(\mathbf{x}) \\ \text{s.t.} & g_i^{\mathcal{F}}(\mathbf{x}) \leq \epsilon_g^{\mathcal{F}}, \\ & h_j^{\mathcal{F}}(\mathbf{x}) \in [-\epsilon_f^{\mathcal{F}}, \epsilon_f^{\mathcal{F}}], \end{cases}$$

$$(P) \leq (P_R)$$

Lower bounds : QP = 0.726867, Gloptipoly = 0.72686845IBBA = 0.726868479732928

Solvers

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formula

Problem

Numerical Solutions and

Solvers

Lower and Upper Bounds

- ▶ QP : (RLT) $x_i x_j \rightarrow w_{ij}$ + McCormick constraints $(w_{ij} \leq .\& \geq .)$.
- ▶ Gloptipoly: SDP relaxation (find polynomial bases - 2nd relaxation) VSDP - rigorous upper bounds.
- ► IBBA:

$$\begin{cases} \max_{x \in X \subseteq \mathbb{R}^n} & f(x) \\ \text{s.t.} & g_i(x) \leq 0, \\ & h_j(x) = 0, \end{cases} \rightarrow \begin{cases} \max_{x \in X^{\mathcal{F}} \subseteq \mathcal{F}^n} & f^{\mathcal{F}}(x) \\ \text{s.t.} & g_i^{\mathcal{F}}(x) \leq \epsilon_g^{\mathcal{F}}, \\ & h_j^{\mathcal{F}}(x) \in [-\epsilon_f^{\mathcal{F}}, \epsilon_f^{\mathcal{F}}], \end{cases}$$

$$(P) \leq (P_R)$$

Lower bounds : QP = 0.726867, Gloptipoly = 0.72686845, IBBA = 0.726868479732928

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

Problem formulation for A Numerical

Solutions and Solvers

Lower and Upper Bounds

UB (decreases by its)
$$\geq$$
 (P_R) \geq (P) \geq LB ?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)$$
?

$$A_8^{\mathcal{F}} > (P) \text{ or } A_8^{\mathcal{F}} >> (P)$$
?

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulation

and GO code

formulation for Ag Numerical Solutions and Solvers

Lower and Upper Bounds UB (decreases by its) \geq (P_R) \geq (P) \geq LB?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)^{\frac{1}{2}}$$

$$A_8^{\mathcal{F}} > (P)$$
 or $A_8^{\mathcal{F}} >> (P)$?

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

Problem formulation for A₈
Numerical Solutions and

Solvers Lower and Upper Bounds UB (decreases by its) \geq (P_R) \geq (P) \geq LB?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)^2$$

$$A_8^{\mathcal{F}} > (P)$$
 or $A_8^{\mathcal{F}} >> (P)$

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

Problem formulation for Ag

Numerical Solutions and Solvers Lower and Upper

Lower and Upper Bounds UB (decreases by its) \geq (P_R) \geq (P) \geq LB?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)$$
?

$$A_8^{\mathcal{F}} > (P) \text{ or } A_8^{\mathcal{F}} >> (P)^{\mathsf{T}}$$

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

Problem formulation for As

Solutions and Solvers

Lower and Upper Bounds

UB (decreases by its)
$$\geq$$
 (P_R) \geq (P) \geq LB ?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)$$
?

$$A_8^{\mathcal{F}} > (P) \text{ or } A_8^{\mathcal{F}} >> (P)$$
?

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations

and GO codes

Problem formulation for A

Numerical Solutions and Solvers

Lower and Upper Bounds

UB (decreases by its)
$$\geq$$
 (P_R) \geq (P) \geq LB ?

LB:

$$A_8^{\mathcal{F}} \leq (P_R)$$
, but

$$A_8^{\mathcal{F}} \simeq (P)$$
?

$$A_8^{\mathcal{F}} > (P) \text{ or } A_8^{\mathcal{F}} >> (P)$$
?

Lower bound: a formulation

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO codes

Problem formulation for A₈ Numerical Solutions and

Lower and Upper Bounds Remark: The solution is almost symmetric!

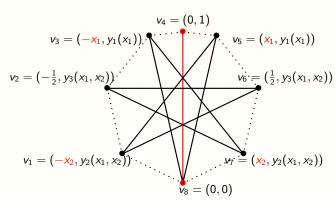


Figure: Symmetric case. Definition of variables.

A nonconvex program for LB

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO code

formulation for A₈
Numerical
Solutions and
Solvers

Lower and Upper Bounds

$$\begin{cases} \max_{x_1, x_2} & x_2 y_3 - \frac{1}{2} y_2 + \frac{1}{2} y_1 - x_1 y_3 + x_1 \\ & 0 \le x_1 \le 0.5 \\ & 0 \le x_2 \le 0.5. \end{cases}$$

Where

$$y_1(x_1) = \sqrt{1 - x_1^2}$$

$$y_2(x_1, x_2) = y_1(x_1) - \sqrt{1 - (x_1 + x_2)^2}$$

$$y_3(x_1, x_2) = y_2(x_1, x_2) + \sqrt{1 - \left(\frac{1}{2} + x_2\right)^2}$$

IBBA $\longrightarrow A_8^S \in 0.7268684827516[265, 365]$

Accuracy: 10^{-14} in 0.1s, certified at 10^{-12} by IBBA in 186s

A nonconvex program for LB

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Octagons

Problem formulation for A

Numerical Solutions and Solvers

Lower and Upper Bounds

$$\begin{cases} \max_{x_1, x_2} & x_2 y_3 - \frac{1}{2} y_2 + \frac{1}{2} y_1 - x_1 y_3 + x_1 \\ & 0 \le x_1 \le 0.5 \\ & 0 \le x_2 \le 0.5. \end{cases}$$

Where

$$y_1(x_1) = \sqrt{1 - x_1^2}$$

$$y_2(x_1, x_2) = y_1(x_1) - \sqrt{1 - (x_1 + x_2)^2}$$

$$y_3(x_1, x_2) = y_2(x_1, x_2) + \sqrt{1 - \left(\frac{1}{2} + x_2\right)^2}$$

IBBA $\longrightarrow A_8^S \in 0.7268684827516[265, 365]$

Accuracy: 10^{-14} in 0.1s, certified at 10^{-12} by IBBA in 186s

Conclusion on the Hansen's Octagon

Some stories about small octagons

Frédéric Messine

4 Small

Octagon

Problem formulation for

Numerical Solutions and Solvers

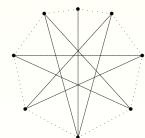
Lower and Upper Bounds

- ▶ 31 diameter graphs: Graham's conjecture is proved → 1 case (31). Foster and Szabo Results (2007).
- ► Bounds:

$$A_8^* \in 0.72686848275[16265, 26265]$$

$$Gloptipoly = 0.72686849, IBBA = 0.7268684897329$$

Solutions:



Hansen's Octagon Area ≈ 0.72686848275

Application of the Hansen's Octagon

Some stories about small octagons

Frédéric Messine

4 Small Octagons

Formulations and GO codes

Problem formulation for A₈ Numerical Solutions and Solvers

Lower and Upper Bounds

