Interval Analysis: Nonlinear Computer-Assisted Proofs

Alexandre Goldsztejn¹

¹CNRS-INS2I Laboratoire d'Informatique de Nantes Atlantique alexandre.goldsztejn@gmail.com www.goldsztejn.com

RAIM 2013

Numerical analysis

- Solve numerical problems (systems of equations, optimization problems, dynamical systems simulations, etc.)
- Using computers (simple operations computed with finite precision)
- ⇒ Approximate solutions, or worth artefact solutions
- ⇒ Central question: Sensitivity analysis

Interval analysis

- Compute rigorously using finite precision computations (interval arithmetic)
- → Powerful when small scale, strongly nonlinear (some applications in robotics, control, etc)
- → Rigorous proofs of mathematical statements (up to algorithmic errors, or compilers errors, or hardware errors)

Numerical analysis

- Solve numerical problems (systems of equations, optimization problems, dynamical systems simulations, etc.)
- Using computers (simple operations computed with finite precision)
- ⇒ Approximate solutions, or worth artefact solutions
- ⇒ Central question: Sensitivity analysis

Interval analysis

- Compute rigorously using finite precision computations (interval arithmetic)
- → Powerful when small scale, strongly nonlinear (some applications in robotics, control, etc)
- → Rigorous proofs of mathematical statements (up to algorithmic errors, or compilers errors, or hardware errors)

Famous Computer Assisted Proofs Involving IA

- Thomas Hales: Kepler conjecture (1998)
- Warwick Tucker: The Lorentz attractor exists, answering the 14th Smale problem (1999)

Session Content

- Alexandre Goldsztejn: "La fée clochette est chaotique" (2011)
- Nicolas Delanoue: "Classification des applications lisses d'un domaine simplement connexe de ℝ² dans ℝ²" (2013)
- Frédéric Messine: "Quelques histoires sur les petits octogones optimaux et leurs preuves assistés par ordinateur" (2006)

Famous Computer Assisted Proofs Involving IA

- Thomas Hales: Kepler conjecture (1998)
- Warwick Tucker: The Lorentz attractor exists, answering the 14th Smale problem (1999)

Session Content

- Alexandre Goldsztejn: "La fée clochette est chaotique" (2011)
- Nicolas Delanoue: "Classification des applications lisses d'un domaine simplement connexe de ℝ² dans ℝ²" (2013)
- Frédéric Messine: "Quelques histoires sur les petits octogones optimaux et leurs preuves assistés par ordinateur" (2006)

Outline

Interval Analysis

Rigorous Approximate Computations

- Computing Rigorously With Sets
- Proving Existence of Solutions

2 Tinkerbell Is Chaotic

Approximate Computations

- Rump's function:

 $(333.75-a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+\frac{a}{2b}$

- \Rightarrow 1.172 (or 0 on my computer!)
- True result: -0.827396

Approximate Computations

- Rump's function:

 $(333.75-a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+\frac{a}{2b}$

- \Rightarrow 1.172 (or 0 on my computer!)
- True result: -0.827396

Approximate Computations

- Rump's function:

 $(333.75-a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+\frac{a}{2b}$

- \Rightarrow 1.172 (or 0 on my computer!)
 - True result: -0.827396

Approximate Computations

- Rump's function:

 $(333.75-a^2)b^6+a^2(11a^2b^2-121b^4-2)+5.5b^8+\frac{a}{2b}$

- \Rightarrow 1.172 (or 0 on my computer!)
 - True result: -0.827396

Interval Arithmetic

- $[\underline{x}, \overline{x}] \circ [\underline{y}, \overline{y}] = [\underline{z}, \overline{z}]$ defined to contain all possible results

General explicit formula:

 $[\underline{x},\overline{x}] + [\underline{y},\overline{y}] = [\downarrow \underline{x} + \underline{y} \downarrow,\uparrow \overline{x} + \overline{y} \uparrow]$

 $\underline{x}, \overline{x}] \times [\underline{y}, \overline{y}] = [\min\{\downarrow \underline{x}\underline{y} \downarrow, \downarrow \overline{x}\underline{y} \downarrow, \downarrow \underline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow\},\$

 $\max\{\uparrow \underline{x}\underline{y}\uparrow,\uparrow \overline{x}\underline{y}\uparrow,\uparrow \underline{x}\overline{y}\uparrow,\uparrow \overline{xy}\uparrow\}]$

Explicit formulae for $\frac{x}{v}$, exp x, log x, cos x, etc.

Enclosure of Rounding Errors

- $\frac{[1,1]}{[3,3]} = [\frac{1}{3}, \frac{1}{3}] \Rightarrow [0.333333333333333, 0.333333333333333]$
- Rump's function: $[-3.89 \times 10^{22}, 3.66 \times 10^{22}]$

Interval Arithmetic

- $[\underline{x}, \overline{x}] \circ [\underline{y}, \overline{y}] = [\underline{z}, \overline{z}]$ defined to contain all possible results
- General explicit formula:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\downarrow \underline{x} + \underline{y} \downarrow, \uparrow \overline{x} + \overline{y} \uparrow]$$
$$[\underline{x}, \overline{x}] \times [\underline{y}, \overline{y}] = [\min\{\downarrow \underline{x}\underline{y} \downarrow, \downarrow \overline{x}\underline{y} \downarrow, \downarrow \underline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow\},$$
$$\max\{\uparrow \underline{x}\underline{y} \uparrow, \uparrow \overline{x}\underline{y} \uparrow, \uparrow \underline{x}\overline{y} \uparrow, \uparrow \overline{x}\overline{y} \uparrow\}]$$

Explicit formulae for $\frac{x}{v}$, exp x, log x, cos x, etc.

Enclosure of Rounding Errors

- $\frac{[1,1]}{[3,3]} = [\frac{1}{3}, \frac{1}{3}] \Rightarrow [0.333333333333333, 0.3333333333333333]$
- Rump's function: $[-3.89 \times 10^{22}, 3.66 \times 10^{22}]$

Interval Arithmetic

- $[\underline{x}, \overline{x}] \circ [\underline{y}, \overline{y}] = [\underline{z}, \overline{z}]$ defined to contain all possible results
- General explicit formula:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\downarrow \underline{x} + \underline{y} \downarrow, \uparrow \overline{x} + \overline{y} \uparrow]$$
$$[\underline{x}, \overline{x}] \times [\underline{y}, \overline{y}] = [\min\{\downarrow \underline{x}\underline{y} \downarrow, \downarrow \overline{x}\underline{y} \downarrow, \downarrow \underline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow\}, \max\{\uparrow \underline{x}\underline{y} \uparrow, \uparrow \overline{x}\underline{y} \uparrow, \uparrow \overline{x}\overline{y} \uparrow, \uparrow \overline{x}\overline{y} \uparrow\}]$$

Explicit formulae for $\frac{x}{v}$, exp x, log x, cos x, etc.

Enclosure of Rounding Errors

Rump's function: [-3.89 × 10²², 3.66 × 10²²]

Interval Arithmetic

- $[\underline{x}, \overline{x}] \circ [\underline{y}, \overline{y}] = [\underline{z}, \overline{z}]$ defined to contain all possible results
- General explicit formula:

$$[\underline{x}, \overline{x}] + [\underline{y}, \overline{y}] = [\downarrow \underline{x} + \underline{y} \downarrow, \uparrow \overline{x} + \overline{y} \uparrow]$$
$$[\underline{x}, \overline{x}] \times [\underline{y}, \overline{y}] = [\min\{\downarrow \underline{x}\underline{y} \downarrow, \downarrow \overline{x}\underline{y} \downarrow, \downarrow \underline{x}\overline{y} \downarrow, \downarrow \overline{x}\overline{y} \downarrow\}, \max\{\uparrow \underline{x}\underline{y} \uparrow, \uparrow \overline{x}\underline{y} \uparrow, \uparrow \overline{x}\overline{y} \uparrow, \uparrow \overline{x}\overline{y} \uparrow\}]$$

Explicit formulae for $\frac{x}{v}$, exp x, log x, cos x, etc.

Enclosure of Rounding Errors

- $\bullet~$ Rump's function: $[-3.89\times10^{22}, 3.66\times10^{22}]$

Outline

Interval Analysis

Rigorous Approximate Computations

• Computing Rigorously With Sets

- Proving Existence of Solutions
 - Mono-Variable Interval Newton
 - Intermediate Value Theorem
 - Poincaré-Miranda Theorem

Tinkerbell Is Chaotic

Interval Evaluation of an Expression

• f(x, y) = xy + 3x can be evaluated with interval arguments

 $f([1,2],[-1,1]) = [1,2] \times [-1,1] + 3 \times [1,2] = [1,8]$

• Fundamental theorem of interval analysis: The interval evaluation contains all possible results

$$[1,8] \supseteq \{xy + x : x \in [1,2], y \in [-1,1]\}$$

Pessimism \Rightarrow Curse of dimensionality

- Proved: $f(x, y) \ge 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking function sign over domains (robust stability, etc.)
- Proved: $f(x, y) \neq 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking equations solutions (numerous applications)

Interval Evaluation of an Expression

• f(x, y) = xy + 3x can be evaluated with interval arguments e.g. for x = [1, 2] and y = [-1, 1]:

 $f([1,2],[-1,1]) = [1,2] \times [-1,1] + 3 \times [1,2] = [1,8]$

• Fundamental theorem of interval analysis: The interval evaluation contains all possible results

$$[1,8] \supseteq \{xy + x : x \in [1,2], y \in [-1,1]\}$$

Pessimism \Rightarrow Curse of dimensionality

- Proved: $f(x, y) \ge 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking function sign over domains (robust stability, etc.)
- Proved: $f(x, y) \neq 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking equations solutions (numerous applications)

Interval Evaluation of an Expression

• f(x, y) = xy + 3x can be evaluated with interval arguments e.g. for x = [1, 2] and y = [-1, 1]:

 $f([1,2],[-1,1]) = [1,2] \times [-1,1] + 3 \times [1,2] = [1,8]$

• Fundamental theorem of interval analysis: The interval evaluation contains all possible results

$$[1,8] \supseteq \{xy + x : x \in [1,2], y \in [-1,1]\}$$

! Pessimism \Rightarrow Curse of dimensionality

- Proved: $f(x, y) \ge 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking function sign over domains (robust stability, etc.)
- Proved: $f(x, y) \neq 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking equations solutions (numerous applications)

Interval Evaluation of an Expression

• f(x, y) = xy + 3x can be evaluated with interval arguments e.g. for x = [1, 2] and y = [-1, 1]:

 $f([1,2],[-1,1]) = [1,2] \times [-1,1] + 3 \times [1,2] = [1,8]$

• Fundamental theorem of interval analysis: The interval evaluation contains all possible results

$$[1,8] \supseteq \{xy + x : x \in [1,2], y \in [-1,1]\}$$

! Pessimism \Rightarrow Curse of dimensionality

- Proved: $f(x, y) \ge 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking function sign over domains (robust stability, etc.)
 - Proved: $f(x, y) \neq 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- ⇒ Checking equations solutions (numerous applications)

Interval Evaluation of an Expression

• f(x, y) = xy + 3x can be evaluated with interval arguments e.g. for x = [1, 2] and y = [-1, 1]:

 $f([1,2],[-1,1]) = [1,2] \times [-1,1] + 3 \times [1,2] = [1,8]$

• Fundamental theorem of interval analysis: The interval evaluation contains all possible results

$$[1,8] \supseteq \{xy + x : x \in [1,2], y \in [-1,1]\}$$

! Pessimism \Rightarrow Curse of dimensionality

- Proved: $f(x, y) \ge 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking function sign over domains (robust stability, etc.)
 - Proved: $f(x, y) \neq 0$ for all $x \in [1, 2]$ and $y \in [-1, 1]$
- \Rightarrow Checking equations solutions (numerous applications)

Outline

Interval Analysis

- Rigorous Approximate Computations
- Computing Rigorously With Sets

Proving Existence of Solutions

- Mono-Variable Interval Newton
- Intermediate Value Theorem
- Poincaré-Miranda Theorem

2 Tinkerbell Is Chaotic

- Given an initial interval
- All possible derivatives in the interval ⇒ "cone"
- ightarrow Computed using an interval evaluation of the derivative
- ightarrow Mean-value theorem \Rightarrow function's graph included inside cone
- Solution \in intersection of cone and *x*-axis
- Old interval strictly contain new interval ⇒ existence proof!

- Given an initial interval
- All possible derivatives in the interval ⇒ "cone"
- ightarrow Computed using an interval evaluation of the derivative
- $\rightarrow\,$ Mean-value theorem \Rightarrow function's graph included inside cone
- Solution ∈ intersection of cone and *x*-axis
- Old interval strictly contain new interval ⇒ existence proof!

- Given an initial interval
- All possible derivatives in the interval ⇒ "cone"
- ightarrow Computed using an interval evaluation of the derivative
- $\rightarrow\,$ Mean-value theorem \Rightarrow function's graph included inside cone
 - Solution ∈ intersection of cone and *x*-axis
 - Old interval strictly contain new interval ⇒ existence proof!

- Given an initial interval
- All possible derivatives in the interval ⇒ "cone"
- ightarrow Computed using an interval evaluation of the derivative
- $\rightarrow\,$ Mean-value theorem \Rightarrow function's graph included inside cone
 - Solution \in intersection of cone and *x*-axis
 - Old interval strictly contain new interval ⇒ existence proof!

Intermediate Value Theorem

Intermediate Value Theorem

$$f(-1) \leq 0 \wedge f(1) \geq 0 \implies (\exists x \in [-1,1])(f(x) = 0)$$

Usage with Interval Extensions • $[f]([-1,-1]) \le 0 \Rightarrow f(-1) \le 0$ • $[f]([1,1]) \ge 0 \Rightarrow f(1) \ge 0$ $\rightarrow (\exists x \in [-1,1])(f(x) = 0)$

Poincaré-Miranda Theorem

Poincaré-Miranda Theorem (Early 20th Century)

- Poincaré-Miranda theorem (~ Brouwer fixed point theorem)
- Check signs of the function taken inside the sides of the boxes

$$\begin{pmatrix} \forall i \in \{1, \dots, n\} \\ \forall x \in [-1, 1]^n \end{pmatrix} \begin{pmatrix} x_i = -1 \Rightarrow f_i(x) \le 0 \\ x_i = 1 \Rightarrow f_i(x) \ge 0 \end{pmatrix} \\ \implies (\exists x \in [-1, 1]^n) (f(x) = 0)$$

Outline

Continuous State Discrete Time Dynamical System

Definitions

- Dynamical system: $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$
- Initial value: $y_0 \in \mathbb{R}^n$
- Orbit: $(y_0, y_1, ...)$ or $(..., y_{-1}, y_0, y_1, ...)$ with $y_{k+1} := f(y_k)$

Aim

Prove rigorously that the system is chaotic \rightarrow Revisit Stoffer and Palmer 1999 technique (which requires injectivity, but fairies are not injective in general

Continuous State Discrete Time Dynamical System

Definitions

- Dynamical system: $f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$
- Initial value: $y_0 \in \mathbb{R}^n$
- Orbit: $(y_0, y_1, ...)$ or $(..., y_{-1}, y_0, y_1, ...)$ with $y_{k+1} := f(y_k)$

Aim

Prove rigorously that the system is chaotic \rightarrow Revisit Stoffer and Palmer 1999 technique (which requires injectivity, but fairies are not injective in general)

Paradoxical Plotting of Strange Attractors

Problem

- We think we plotted Tinkerbell's strange attractor \rightarrow self contradiction!
- The plot uses double precision and several hundred thousands of steps
- Strange attractor ⇒ chaos ⇒ exponential divergence ⇒ plot completely false!

Pseudo Orbits

• δ -pseudo orbit: $(\ldots, y_{-1}, y_0, y_1, y_2, \ldots)$ such that $||y_{k+1} - f(y_k)|| \le \delta$

 $\delta \equiv \text{computation precision (double with } y_k \approx 1 \Rightarrow \delta \approx 10^{-16})$

Forward Error Analysis

- Forward error: $||y_k f^k(y_0)||$
- Chaotic system $\Rightarrow ||y_k f^k(y_0)||$ grows exponentially
- ightarrow Forward error analysis useless

Shadowing: A Backward Error Analysis

- Used in hyperbolic systems theory
- Simulation accurate for a slightly perturbed initial condition
- Tinkerbell's strange attractor has a shadow

Pseudo Orbits

- δ -pseudo orbit: $(\ldots, y_{-1}, y_0, y_1, y_2, \ldots)$ such that $||y_{k+1} f(y_k)|| \le \delta$
 - $\delta \equiv \text{computation precision (double with } y_k \approx 1 \Rightarrow \delta \approx 10^{-16})$

Forward Error Analysis

- Forward error: $||y_k f^k(y_0)||$
- Chaotic system $\Rightarrow ||y_k f^k(y_0)||$ grows exponentially
- \rightarrow Forward error analysis useless

Shadowing: A Backward Error Analysis

- Used in hyperbolic systems theory
- Simulation accurate for a slightly perturbed initial condition
- Tinkerbell's strange attractor has a shadow

Pseudo Orbits

- δ -pseudo orbit: $(\ldots, y_{-1}, y_0, y_1, y_2, \ldots)$ such that $||y_{k+1} f(y_k)|| \le \delta$
 - $\delta \equiv \text{computation precision (double with } y_k \approx 1 \Rightarrow \delta \approx 10^{-16})$

Forward Error Analysis

- Forward error: $||y_k f^k(y_0)||$
- Chaotic system $\Rightarrow ||y_k f^k(y_0)||$ grows exponentially
- \rightarrow Forward error analysis useless

Shadowing: A Backward Error Analysis

- Used in hyperbolic systems theory
- Simulation accurate for a slightly perturbed initial condition
- Tinkerbell's strange attractor has a shadow

The Inductive Containment Property

- Pseudo orbit + small surrounding boxes
- Hyperbolicity: *n* linearly independant directions that are either contracting or expanding
- Checked using interval evaluations: Inductive Containment Property
- ⇒ Exists an orbit inside the boxes (Poincaré-Miranda Theorem)

The Inductive Containment Property

- Pseudo orbit + small surrounding boxes
- Hyperbolicity: *n* linearly independant directions that are either contracting or expanding
- Checked using interval evaluations: Inductive Containment Property
- ⇒ Exists an orbit inside the boxes (Poincaré-Miranda Theorem)

Finite Length Shadows

The Inductive Containment Property

- Pseudo orbit + small surrounding boxes
- Hyperbolicity: *n* linearly independant directions that are either contracting or expanding
- Checked using interval evaluations: Inductive Containment Property

⇒ Exists an orbit inside the boxes (Poincaré-Miranda Theorem)

Finite Length Shadows

The Inductive Containment Property

- Pseudo orbit + small surrounding boxes
- Hyperbolicity: *n* linearly independant directions that are either contracting or expanding
- Checked using interval evaluations: Inductive Containment Property
- \Rightarrow Exists an orbit inside the boxes (Poincaré-Miranda Theorem)

hinite Length Shadows: Periodic Pseudo-Orbit

Infinite Length Shadow

- δ-pseudo periodic orbit
- We prove ICP rigorously for $(x_0, x_1, \ldots, x_m, x_0)$

 \Rightarrow Infinite length δ -pseudo orbit

$$(\ldots, X_0, X_1, \ldots, X_m, X_0, X_1, \ldots)$$

also verifies the ICP

⇒ Infinite length shadow using finite number of interval computations

hinite Length Shadows: Periodic Pseudo-Orbit

Infinite Length Shadow

- δ-pseudo periodic orbit
- We prove ICP rigorously for $(x_0, x_1, \ldots, x_m, x_0)$
- \Rightarrow Infinite length δ -pseudo orbit

$$(\ldots, x_0, x_1, \ldots, x_m, x_0, x_1, \ldots)$$

also verifies the ICP

⇒ Infinite length shadow using finite number of interval computations

hinite Length Shadows: Periodic Pseudo-Orbit

Infinite Length Shadow

- δ-pseudo periodic orbit
- We prove ICP rigorously for $(x_0, x_1, \ldots, x_m, x_0)$
- \Rightarrow Infinite length δ -pseudo orbit

$$(\ldots, x_0, x_1, \ldots, x_m, x_0, x_1, \ldots)$$

also verifies the ICP

⇒ Infinite length shadow using finite number of interval computations

🕈 Infinite Length Shadows: Branching Pseudo-Orbit

Following Stoffer and Palmer 1999

- Two δ -pseudo periodic orbit: $||x_0 f(x_m)|| \le \delta$ and $||y_0 f(y_m)|| \le \delta$ such that $x_0 \approx y_0$
- We prove ICP for (x₀, x₁,..., x_m, x₀) and (y₀, y₁,..., y_m, y₀) the same box is used for x₀ and y₀
- \Rightarrow Also valid for all infinite length pseudo orbits

- Each ··· 01001 ··· defines an orbit (z_k)_{k∈ℤ}:
 - $z_0 \in [x_0]$
 - Very \neq to each others
 - $\label{eq:Very high sensitivity to initial conditions, while bounded } \\$
- ⇒ Formal proof of chaos using symbolic dynamics

Tinkerbell Map

- $f(x) = (0.9x_1 + x_1^2 0.6013x_2 x_2^2, 2x_1 + 0.5x_2 + 2x_1x_2)$ (not injective)
- We have found two pseudo periodic orbits of period 37, which satisfy:

$$||x_0 - y_0|| \approx 2.5 imes 10^{-9}$$
 and $\max_i \{||x_i - y_i||\} \approx 9.1 imes 10^{-3}$

Inductive containment property

