
RAIM — November 18-20, 2013

A quasi-polynomial algorithm for discrete
logarithm in small characteristic

Razvan Barbulescu Pierrick Gaudry Antoine Joux
Emmanuel Thomé

Discrete logarithm

Definition
Let t and s be two elements in a cyclic group. We call discrete logarithm of s in
base t, if it exists, the smallest positive integer x such that

tx = s.

Example

DSA signature relies on the difficulty of solving the equation

tx ≡ s mod p,

for a prime p and integers t and s.

Example

Pairing based crypto-systems relies on the difficulty of solving the equation

t(X)x ≡ s(X) mod ϕ(X),

for an irreducible polynomial ϕ(X) in F2[X] or F3[X].

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 1 / 16

Motivation

The security of the public key protocols relies on the difficulty of
primitives:

1. factorization (RSA);

2. discrete logarithm (DSA);

3. elliptic curve discrete logarithm (ECDSA).

4. . . .

factorization oo
same complexity

//discrete log.
OO

is analoguous to
��

elliptic discrete log.
pairing-friendly curves reduce to

//discrete log. in F2n and F3n

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 2 / 16

Quick remarks

I Fqk is represented as Fq[x]/〈ϕ〉 ; we can choose ϕ;

I logt s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ` of
(qk − 1)/(q − 1);

I logt1 t2 · logt2 s = logt1 s; we simply write log s;

I if a ∈ F∗q, then aq−1 = 1. So (q − 1) log a ≡ 0 mod `, hence
log a ≡ 0 mod `.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 16

Quick remarks

I Fqk is represented as Fq[x]/〈ϕ〉 ; we can choose ϕ;

I logt s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ` of
(qk − 1)/(q − 1);

I logt1 t2 · logt2 s = logt1 s; we simply write log s;

I if a ∈ F∗q, then aq−1 = 1. So (q − 1) log a ≡ 0 mod `, hence
log a ≡ 0 mod `.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 16

Quick remarks

I Fqk is represented as Fq[x]/〈ϕ〉 ; we can choose ϕ;

I logt s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ` of
(qk − 1)/(q − 1);

I logt1 t2 · logt2 s = logt1 s; we simply write log s;

I if a ∈ F∗q, then aq−1 = 1. So (q − 1) log a ≡ 0 mod `, hence
log a ≡ 0 mod `.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 16

Quick remarks

I Fqk is represented as Fq[x]/〈ϕ〉 ; we can choose ϕ;

I logt s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ` of
(qk − 1)/(q − 1);

I logt1 t2 · logt2 s = logt1 s; we simply write log s;

I if a ∈ F∗q, then aq−1 = 1. So (q − 1) log a ≡ 0 mod `, hence
log a ≡ 0 mod `.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 16

Quick remarks

I Fqk is represented as Fq[x]/〈ϕ〉 ; we can choose ϕ;

I logt s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ` of
(qk − 1)/(q − 1);

I logt1 t2 · logt2 s = logt1 s; we simply write log s;

I if a ∈ F∗q, then aq−1 = 1. So (q − 1) log a ≡ 0 mod `, hence
log a ≡ 0 mod `.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 3 / 16

Smoothness in Fq[x]

Definition
A polynomial is m-smooth if all its irreducible factors have degree less or equal to m.

Proposition

Put Nq(n,m) the number of degree-n monic m-smooth polynomials.

• Nq(D, 1)/qD ≈ 1/D!;

• Nq(D, 16D)/qD = c + o(1) for a constant c > 0.

idea.

Nq(D, 1) =
(
q
D

)
+ · · · ≈ qD/D!.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 4 / 16

Obtaining relations

Example

Take q = 3, k = 5, ϕ = x5 + x4 + 2x3 + 1 and ` = 11 (divisor of 35 − 1). We have

x5 ≡ 2(x + 1)(x3 + x2 + 2x + 1) mod ϕ

x6 ≡ 2(x2 + 1)(x2 + x + 2) mod ϕ

x7 ≡ 2(x + 2)(x + 1)2 mod ϕ.

The last relation gives:

7 log x ≡ 1 log(x + 2) + 2 log(x + 1) mod 11.

With 3 equations we compute log x , log(x + 1) and log(x + 2).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 5 / 16

Obtaining relations

Example

Take q = 3, k = 5, ϕ = x5 + x4 + 2x3 + 1 and ` = 11 (divisor of 35 − 1). We have

x5 ≡ 2(x + 1)(x3 + x2 + 2x + 1) mod ϕ

x6 ≡ 2(x2 + 1)(x2 + x + 2) mod ϕ

x7 ≡ 2(x + 2)(x + 1)2 mod ϕ.

The last relation gives:

7 log x ≡ 1 log(x + 2) + 2 log(x + 1) mod 11.

With 3 equations we compute log x , log(x + 1) and log(x + 2).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 5 / 16

Illustration of the classical algorithms

deg = 0

deg = k − 1

deg ≈ k1/3

P

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 6 / 16

Speeding up Joux’ algorithm

deg = 1

deg = k − 1

deg ≈ k1/3

?

P

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 7 / 16

Representing Fq2k

Choosing ϕ: Try random h0, h1 ∈ Fq2[x] with deg h0, deg h1 ≤ 2 until
T (x) := h1(x)xq − h0(x) has a divisor of degree k .

Remark

• The existence of h0 and h1 is heuristic but found in practice in time O(k).

•
h1(x)xq ≡ h0(x) mod T (x).

• If P ∈ Fq2[x] then

h1(x)degPP(x)q = h1(x)degPP̃(xq)

≡ h1(x)degPP̃

(
h0
h1

)
mod T (x).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 8 / 16

Representing Fq2k

Choosing ϕ: Try random h0, h1 ∈ Fq2[x] with deg h0, deg h1 ≤ 2 until
T (x) := h1(x)xq − h0(x) has a divisor of degree k .

Remark

• The existence of h0 and h1 is heuristic but found in practice in time O(k).

•
h1(x)xq ≡ h0(x) mod T (x).

• If P ∈ Fq2[x] then

h1(x)degPP(x)q = h1(x)degPP̃(xq)

≡ h1(x)degPP̃

(
h0
h1

)
mod T (x).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 8 / 16

Representing Fq2k

Choosing ϕ: Try random h0, h1 ∈ Fq2[x] with deg h0, deg h1 ≤ 2 until
T (x) := h1(x)xq − h0(x) has a divisor of degree k .

Remark

• The existence of h0 and h1 is heuristic but found in practice in time O(k).

•
h1(x)xq ≡ h0(x) mod T (x).

• If P ∈ Fq2[x] then

h1(x)degPP(x)q = h1(x)degPP̃(xq)

≡ h1(x)degPP̃

(
h0
h1

)
mod T (x).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 8 / 16

Representing Fq2k

Choosing ϕ: Try random h0, h1 ∈ Fq2[x] with deg h0, deg h1 ≤ 2 until
T (x) := h1(x)xq − h0(x) has a divisor of degree k .

Remark

• The existence of h0 and h1 is heuristic but found in practice in time O(k).

•
h1(x)xq ≡ h0(x) mod T (x).

• If P ∈ Fq2[x] then

h1(x)degPP(x)q = h1(x)degPP̃(xq)

≡ h1(x)degPP̃

(
h0
h1

)
mod T (x).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 8 / 16

Building block

Proposition

Under plausible heuristics explained below, for any polynomial P one finds in
polynomial time a relation

logP ≡ e1 logP1 + · · ·+ ek logPk mod `,

with degPi ≤ 1
2 degP .

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 9 / 16

Proof: The left hand side

Let logP be the required computation. For random a, b, c , d ∈ Fq2 we have

h1(x)degP
(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
≡ small degree mod T (X).

If the small degree polynomial is smooth we obtain

log
(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
≡ e1 logP1 + · · ·+ en logPn mod `,

with degPi ≤ 1
2 degP .

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 10 / 16

Proof: The left hand side

Let logP be the required computation. For random a, b, c , d ∈ Fq2 we have

h1(x)degP
(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
≡ small degree mod T (X).

If the small degree polynomial is smooth we obtain

log
(
(aP + b)q(cP + d)− (aP + b)(cP + d)q

)
≡ e1 logP1 + · · ·+ en logPn mod `,

with degPi ≤ 1
2 degP .

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 10 / 16

The right hand side

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

It gives xqy − y qx =
∏

(α∈Fq

⋃
{∞}(x − αy) and

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)∈P1(Fq)

β(aP + b)− α(cP + d)

=
∏

(α,β)∈P1(Fq)

(−cα + aβ)P − (dα− bβ)

= λ
∏

(α,β)∈P1(Fq)

(
P − dα− bβ

aβ − cα

)
,

Here q + 1 out of the q2 + 1 elements of {1}
⋃
{P + a : a ∈ Fq2} occur.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 11 / 16

The right hand side

Recall the identity

xq − x =
∏
α∈Fq

(x − α).

It gives xqy − y qx =
∏

(α∈Fq

⋃
{∞}(x − αy) and

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)∈P1(Fq)

β(aP + b)− α(cP + d)

=
∏

(α,β)∈P1(Fq)

(−cα + aβ)P − (dα− bβ)

= λ
∏

(α,β)∈P1(Fq)

(
P − dα− bβ

aβ − cα

)
,

Here q + 1 out of the q2 + 1 elements of {1}
⋃
{P + a : a ∈ Fq2} occur.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 11 / 16

Linear algebra step for P

I Each relation gives a linear equation for the logs of {P + a : a ∈ Fq2}.

I There are #PGL(2, q2)/#PGL(2, q) = (q6 − q2)/(q3 − q) = q3 + q distinct
quadruples (a, b, c , d); a constant fraction of relations.

I We have a matrix of cq3 rows (c constant) and q2 + 1 columns. Heuristically, the
rank is always full, so we can make a linear combination of the rows equal to logP .

I Each relation brings O(k) polynomials of smaller degree. The linear combination
uses q2 equations. So logP requires O(q2k) logs.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 12 / 16

The algorithm

We construct a descent tree in which each node is a polynomial. At each step we
divide the degree by 2.

I arity of the descent tree is O(q2k);

I height is log2 k ;

I cardinality max(q, k)O(log k).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 13 / 16

Complexity

Put Q = q2k . When q ≈ k we have

logQ = 2k log q,

so k = O(logQ) and q = O(logQ). Then the complexity is

max(q, k)log k+O(1) = (logQ)O(log logQ).

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 14 / 16

Characteristic 2 and 3

Example

Joux computed the discrete logarithm in the field of 24080 = q2k for q = 28 = k + 1.

When q < k we embed Fq2k in Fq′2k with q′ = qdlog qke.

Example

For F21003 we compute logs in F10242·1003 = F220060. Complexity logQO(log logQ) with a
larger constant.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 15 / 16

Characteristic 2 and 3

Example

Joux computed the discrete logarithm in the field of 24080 = q2k for q = 28 = k + 1.

When q < k we embed Fq2k in Fq′2k with q′ = qdlog qke.

Example

For F21003 we compute logs in F10242·1003 = F220060. Complexity logQO(log logQ) with a
larger constant.

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 15 / 16

Conclusion and open questions

I The complexity of the discrete log in Fqk for small q was improved, replacing FFS
except for a small range.

I Pairings-based cryptography in small characteristic has a much smaller complexity
than expected.

Open questions:

1. The rank of the matrix in the computations is full.

2. The polynomials h0 and h1 can be chosen for any k and q.

3. How should one combine the various algorithms?

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 16 / 16

Thank you for your attention

Questions?

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm 16 / 16

	Introduction
	Building block
	Discrete logarithm algorithm
	Conclusion

