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Discrete logarithm

Definition
Let t and s be two elements in a cyclic group. We call discrete logarithm of s in
base t, if it exists, the smallest positive integer x such that

t* =s.

Example
DSA signature relies on the difficulty of solving the equation

t*=s mod p,
for a prime p and integers t and s.

Example
Pairing based crypto-systems relies on the difficulty of solving the equation

t(X) =s(X) mod p(X),

for an irreducible polynomial ¢(X) in Fo[X] or F3[X].
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Motivation
The security of the public key protocols relies on the difficulty of
primitives:
1. factorization (RSA);
2. discrete logarithm (DSA);
3. elliptic curve discrete logarithm (ECDSA).

4. ...

factorization discrete log.

same complexity
1 is analoguous to

elliptic discrete Iog.—»discrete log. in Fon and Fsn

pairing-friendly curves reduce to
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Quick remarks

» '« is represented as I'j[x]/(¢) ; we can choose ¢;

» log, s is defined modulo the group cardinal; by CRT it is
enough to compute it modulo a prime divisor ¢ of

(¢ = 1)/(q —1);
» log, t>-log, s = log, s; we simply write logs;

» if ac I, then a% ' = 1. So (¢ —1)loga=0 mod ¢, hence
loga =0 mod /.
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Smoothness in F[x]

Definition
A polynomial is m-smooth if all its irreducible factors have degree less or equal to m.
Proposition
Put Ny(n, m) the number of degree-n monic m-smooth polynomials.
e Ny,(D,1)/q° ~ 1/D};
o Ng(D,£D)/qP = c+ o(1) for a constant ¢ > 0.

idea.
Nq(D,l):(g)qL---qu/D!. []
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Obtaining relations

Example
Take g =3, k=5, o = x° + x* + 2x3 + 1 and ¢ = 11 (divisor of 3° — 1). We have

X = 2(x+1)(x*+x*+2x+1) mod p
0 2(x* +1)(x* + x +2) mod ¢
= 2(x+2)(x +1)* mod .

X
Il

>
|
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The last relation gives:
7Tlogx = 1log(x +2) + 2log(x +1) mod 11.

With 3 equations we compute log x, log(x + 1) and log(x + 2).
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lllustration of the classical algorithms
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Speeding up Joux’ algorithm

*~)
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Representing F

Choosing ¢: Try random hg, h1 € F[x] with deg hy, deg hy < 2 until
T(x) := hi(x)x9 — ho(x) has a divisor of degree k.
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Representing F

Choosing ¢: Try random hg, h1 € F[x] with deg hy, deg hy < 2 until
T(x) := hi(x)x9 — ho(x) has a divisor of degree k.

Remark
e The existence of hy and hy is heuristic but found in practice in time O(k).

hi1(x)x? = ho(x) mod T(x).
e If P € Fp[x] then
h(x)*EPP(x)T = hi(x)*€"P(x)

= h(x)*ePP (:—?) mod T (x).
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Building block

Proposition
Under plausible heuristics explained below, for any polynomial P one finds in
polynomial time a relation

log P = e logP;+ -+ exlog P mod /,

with deg P; < %deg P.
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Proof: The left hand side

Let log P be the required computation. For random a, b,c,d € F,. we have

h(x)%€" ((aP + b)9(cP + d) — (aP + b)(cP + d)?) = small degree mod T(X).
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Proof: The left hand side

Let log P be the required computation. For random a, b,c,d € F,. we have

h(x)%€" ((aP + b)9(cP + d) — (aP + b)(cP + d)?) = small degree mod T(X).

If the small degree polynomial is smooth we obtain
log ((aP + b)9(cP + d) — (aP + b)(cP + d)?) = e;log P + - - - + e, log P, mod ¢,

with deg P; < %deg P.
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The right hand side

Recall the identity
xT—x= (x — a).
q

It gives x9y — y9x = H(aEFqU{oo}(X — ay) and
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The right hand side

Recall the identity

xT—x= H(x—oz).

ack,

It gives x9y — y9x = H(aGFqU{oo}(X — ay) and

(aP + b)¥(cP +d) — (aP + b)(cP +d)* = []  B(aP+ b)— a(cP +d)
(a,3)EP(Fq)

= ][] (ca+aB)P—(da— bp)

(a,B)€P(Fq)

- do — b
=A H <P_aﬁ—ca)'

(a,B)EP(Fq)

Here g + 1 out of the ¢*> + 1 elements of {1} J{P +a:a € F,} occur.
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Linear algebra step for P

» Each relation gives a linear equation for the logs of {P +a:a € Fp}.

» There are #PGL(2, ¢?)/#PGL(2,q) = (¢° — ¢°)/(q® — q) = ¢* + g distinct
quadruples (a, b, ¢, d); a constant fraction of relations.

» We have a matrix of cq® rows ( ¢ constant) and g? + 1 columns. Heuristically, the
rank is always full, so we can make a linear combination of the rows equal to log P.

» Each relation brings O(k) polynomials of smaller degree. The linear combination
uses g2 equations. So log P requires O(qg?k) logs.
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The algorithm

We construct a descent tree in which each node is a polynomial. At each step we
divide the degree by 2.

» arity of the descent tree is O(q%k);
» height is log, k;

» cardinality max(gq, k)©O(lcek).
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Complexity

Put Q = g*%. When g ~ k we have

log @ = 2klog q,
so k = O(log Q) and g = O(log Q). Then the complexity is

max(q, k)logk+O(1) _ (Iog Q)O(Ioglog Q).
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Characteristic 2 and 3

Example
Joux computed the discrete logarithm in the field of 24980 = g2 for q =28 = k + 1.
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Characteristic 2 and 3

Example
Joux computed the discrete logarithm in the field of 24980 = g2 for q =28 = k + 1.

When g < k we embed F 2 in E with ¢’ = gllog8 a1,

Example

For Fi00s we compute logs in Fyy,42105 = Foo0e0. Complexity log QOloglog Q) \ith a
larger constant.
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Conclusion and open questions

» The complexity of the discrete log in F',« for small g was improved, replacing FFS
except for a small range.

» Pairings-based cryptography in small characteristic has a much smaller complexity
than expected.

Open questions:

1. The rank of the matrix in the computations is full.
2. The polynomials hy and h; can be chosen for any k and q.

3. How should one combine the various algorithms?
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Thank you for your attention

Questions?
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