RAIM — November 18-20, 2013

A quasi-polynomial algorithm for discrete logarithm in small characteristic

Razvan Barbulescu Pierrick Gaudry Antoine Joux Emmanuel Thomé

Discrete logarithm

Definition

Let t and s be two elements in a cyclic group. We call discrete logarithm of s in base t, if it exists, the smallest positive integer x such that

 $t^{x} = s$.

Example

DSA signature relies on the difficulty of solving the equation

 $t^x \equiv s \mod p$,

for a prime p and integers t and s.

Example

Pairing based crypto-systems relies on the difficulty of solving the equation

 $t(X)^{\times} \equiv s(X) \mod \varphi(X),$

for an irreducible polynomial $\varphi(X)$ in $F_2[X]$ or $F_3[X]$.

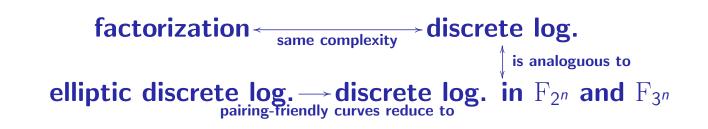
Motivation

The security of the public key protocols relies on the difficulty of primitives:

1. factorization (RSA);

4. . . .

- 2. discrete logarithm (DSA);
- 3. elliptic curve discrete logarithm (ECDSA).



▶ F_{q^k} is represented as $F_q[x]/\langle \varphi \rangle$; we can choose φ ;

- ▶ F_{q^k} is represented as $F_q[x]/\langle \varphi \rangle$; we can choose φ ;
- ▶ log_t s is defined modulo the group cardinal; by CRT it is enough to compute it modulo a prime divisor ℓ of (q^k − 1)/(q − 1);

- ▶ F_{q^k} is represented as $F_q[x]/\langle \varphi \rangle$; we can choose φ ;
- ▶ log_t s is defined modulo the group cardinal; by CRT it is enough to compute it modulo a prime divisor ℓ of (q^k − 1)/(q − 1);
- $\blacktriangleright \log_{t_1} t_2 \cdot \log_{t_2} s = \log_{t_1} s$; we simply write $\log s$;

- ▶ F_{q^k} is represented as $F_q[x]/\langle \varphi \rangle$; we can choose φ ;
- ▶ log_t s is defined modulo the group cardinal; by CRT it is enough to compute it modulo a prime divisor ℓ of (q^k − 1)/(q − 1);
- $\blacktriangleright \log_{t_1} t_2 \cdot \log_{t_2} s = \log_{t_1} s$; we simply write $\log s$;
- ▶ if $a \in \mathbb{F}_q^*$, then $a^{q-1} = 1$. So $(q-1) \log a \equiv 0 \mod \ell$, hence $\log a \equiv 0 \mod \ell$.

Smoothness in $F_q[x]$

Definition

A polynomial is m-smooth if all its irreducible factors have degree less or equal to m.

Proposition

Put $N_q(n, m)$ the number of degree-*n* monic *m*-smooth polynomials.

- $N_q(D,1)/q^D \approx 1/D!;$
- $N_q(D, rac{1}{6}D)/q^D = c + o(1)$ for a constant c > 0.

idea. $N_q(D,1) = {q \choose D} + \cdots \approx q^D/D!.$

Obtaining relations

Example

Take q = 3, k = 5, $\varphi = x^5 + x^4 + 2x^3 + 1$ and $\ell = 11$ (divisor of $3^5 - 1$). We have

$$egin{array}{rcl} x^5 &\equiv& 2(x+1)(x^3+x^2+2x+1) \mod arphi \ x^6 &\equiv& 2(x^2+1)(x^2+x+2) \mod arphi \ x^7 &\equiv& 2(x+2)(x+1)^2 \mod arphi. \end{array}$$

Obtaining relations

Example

Take q = 3, k = 5, $\varphi = x^5 + x^4 + 2x^3 + 1$ and $\ell = 11$ (divisor of $3^5 - 1$). We have

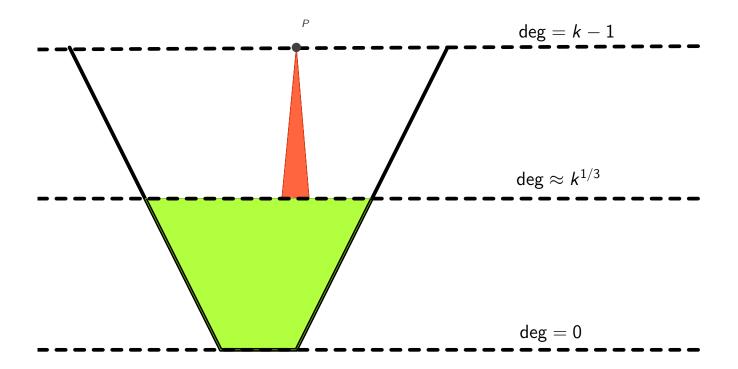
$$egin{array}{rcl} x^5 &\equiv& 2(x+1)(x^3+x^2+2x+1) \mod arphi \ x^6 &\equiv& 2(x^2+1)(x^2+x+2) \mod arphi \ x^7 &\equiv& 2(x+2)(x+1)^2 \mod arphi. \end{array}$$

The last relation gives:

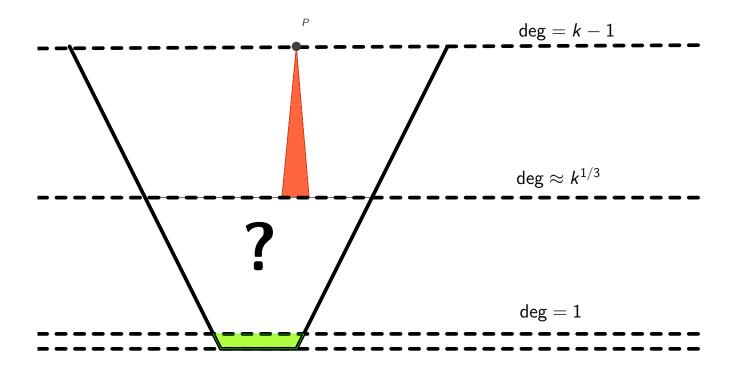
$$7 \log x \equiv 1 \log(x+2) + 2 \log(x+1) \mod 11.$$

With 3 equations we compute $\log x$, $\log(x + 1)$ and $\log(x + 2)$.

Illustration of the classical algorithms



Speeding up Joux' algorithm



R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm

Choosing φ : Try random $h_0, h_1 \in F_{q^2}[x]$ with deg $h_0, \text{deg } h_1 \leq 2$ until $T(x) := h_1(x)x^q - h_0(x)$ has a divisor of degree k.

Choosing φ : Try random $h_0, h_1 \in F_{q^2}[x]$ with deg $h_0, \text{deg } h_1 \leq 2$ until $T(x) := h_1(x)x^q - h_0(x)$ has a divisor of degree k.

Remark

• The existence of h_0 and h_1 is heuristic but found in practice in time O(k).

Choosing φ : Try random $h_0, h_1 \in F_{q^2}[x]$ with deg $h_0, \text{deg } h_1 \leq 2$ until $T(x) := h_1(x)x^q - h_0(x)$ has a divisor of degree k.

Remark

• The existence of h_0 and h_1 is heuristic but found in practice in time O(k).

 $h_1(x)x^q \equiv h_0(x) \mod T(x).$

Choosing φ : Try random $h_0, h_1 \in F_{q^2}[x]$ with deg $h_0, \text{deg } h_1 \leq 2$ until $T(x) := h_1(x)x^q - h_0(x)$ has a divisor of degree k.

Remark

• The existence of h_0 and h_1 is heuristic but found in practice in time O(k).

$$h_1(x)x^q \equiv h_0(x) \mod T(x).$$

• If $P \in F_{q^2}[x]$ then

$$egin{aligned} &h_1(x)^{\deg P}P(x)^q &= h_1(x)^{\deg P} ilde{P}(x^q) \ &\equiv h_1(x)^{\deg P} ilde{P}\left(rac{h_0}{h_1}
ight) \mod T(x). \end{aligned}$$

Building block

Proposition

Under plausible heuristics explained below, for any polynomial P one finds in polynomial time a relation

$$\log P \equiv e_1 \log P_1 + \dots + e_k \log P_k \mod \ell,$$

with deg $P_i \leq \frac{1}{2} \deg P$.

Proof: The left hand side

Let $\log P$ be the required computation. For random $a, b, c, d \in F_{q^2}$ we have

 $h_1(x)^{\deg P}\left((aP+b)^q(cP+d)-(aP+b)(cP+d)^q\right)\equiv \text{ small degree } \mod T(X).$

Proof: The left hand side

Let $\log P$ be the required computation. For random $a, b, c, d \in F_{q^2}$ we have

 $h_1(x)^{\deg P}\left((aP+b)^q(cP+d)-(aP+b)(cP+d)^q\right)\equiv \text{ small degree} \mod T(X).$

If the small degree polynomial is smooth we obtain

 $\log \left((aP+b)^q (cP+d) - (aP+b)(cP+d)^q \right) \equiv e_1 \log P_1 + \dots + e_n \log P_n \mod \ell,$ with deg $P_i \leq \frac{1}{2} \deg P$.

The right hand side

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbf{F}_q} (x - \alpha).$$

It gives $x^q y - y^q x = \prod_{(\alpha \in F_q \bigcup \{\infty\}} (x - \alpha y)$ and

The right hand side

Recall the identity

$$x^q - x = \prod_{\alpha \in \mathbf{F}_q} (x - \alpha).$$

It gives $x^q y - y^q x = \prod_{(\alpha \in F_q \bigcup \{\infty\}} (x - \alpha y)$ and

$$(aP+b)^q(cP+d) - (aP+b)(cP+d)^q = \prod_{(\alpha,\beta)\in\mathrm{P}^1(\mathrm{F}_q)} \beta(aP+b) - \alpha(cP+d)$$

$$=\prod_{(\alpha,\beta)\in\mathrm{P}^1(\mathrm{F}_q)}(-c\alpha+a\beta)P-(d\alpha-b\beta)$$

$$=\lambda\prod_{(lpha,eta)\in\mathrm{P}^1(\mathrm{F}_{\mathsf{q}})}\left(\mathsf{P}-rac{dlpha-beta}{aeta-clpha}
ight)$$
 ,

Here q + 1 out of the $q^2 + 1$ elements of $\{1\} \bigcup \{P + a : a \in F_{q^2}\}$ occur.

Linear algebra step for *P*

▶ Each relation gives a linear equation for the logs of $\{P + a : a \in F_{q^2}\}$.

- ▶ There are $\#PGL(2, q^2)/\#PGL(2, q) = (q^6 q^2)/(q^3 q) = q^3 + q$ distinct quadruples (a, b, c, d); a constant fraction of relations.
- ▶ We have a matrix of cq^3 rows (c constant) and $q^2 + 1$ columns. Heuristically, the rank is always full, so we can make a linear combination of the rows equal to log P.
- Each relation brings O(k) polynomials of smaller degree. The linear combination uses q² equations. So log P requires O(q²k) logs.

The algorithm

We construct a descent tree in which each node is a polynomial. At each step we divide the degree by 2.

- ▶ arity of the descent tree is $O(q^2k)$;
- height is $\log_2 k$;
- cardinality $\max(q, k)^{O(\log k)}$.

Complexity

Put $Q = q^{2k}$. When $q \approx k$ we have

 $\log Q = 2k \log q,$

so $k = O(\log Q)$ and $q = O(\log Q)$. Then the complexity is $\max(q, k)^{\log k + O(1)} = (\log Q)^{O(\log \log Q)}.$

Characteristic 2 and 3

Example

Joux computed the discrete logarithm in the field of $2^{4080} = q^{2k}$ for $q = 2^8 = k + 1$.

Characteristic 2 and 3

Example

Joux computed the discrete logarithm in the field of $2^{4080} = q^{2k}$ for $q = 2^8 = k + 1$.

When q < k we embed $F_{q^{2k}}$ in $F_{q'^{2k}}$ with $q' = q^{\lceil \log qk \rceil}$.

Example

For $F_{2^{1003}}$ we compute logs in $F_{1024^{2 \cdot 1003}} = F_{2^{20060}}$. Complexity log $Q^{O(\log \log Q)}$ with a larger constant.

Conclusion and open questions

- ▶ The complexity of the discrete log in F_{q^k} for small q was improved, replacing FFS except for a small range.
- Pairings-based cryptography in small characteristic has a much smaller complexity than expected.

Open questions:

- 1. The rank of the matrix in the computations is full.
- 2. The polynomials h_0 and h_1 can be chosen for any k and q.
- 3. How should one combine the various algorithms?

Thank you for your attention

Questions?

R. Barbulescu, P. Gaudry, A. Joux, E. Thomé — A quasi-polynomial algorithm